识别活动位点。为了揭示Ni@Nincm的局部化学配位环境,我们进一步进行了XAS测量。ni k-边缘X射线吸附精细结构(XANES)光谱表明,Ni@nincm的预边是Nio和Ni Foil之间的(图4a),表明Ni@NINCM中Ni物种的平均价值处于部分氧化状态。这与以深红色圆圈标记的白线峰的高度保持一致。考虑到Ni NP的价为零,较高的氧化状态意味着除Ni@Nincm中的Ni NP外,Ni原子的另一种协调形式存在。扩展X射线吸收精细结构的傅立叶变换
a) 蒸汽甲烷重整 b) 碳氢化合物的部分氧化 2. 煤气化制氢 3. 水电解制氢 4. 核能制氢 5. 风能制氢 6. 生物质制氢 5. 利用太阳能制氢。 制氢方法有多种。我们可以根据氢气是来自可再生能源(如风能、太阳能)还是来自不可再生能源(如煤炭、天然气)进行大致分类。目前,传统的制氢方法是氢气生产中最广泛采用的方法,占全球氢气产量的近 90%。但这些方法的问题是它们会释放大量的二氧化碳。水电解占全球产量的 4%,该工艺的优势在于它拥有完善的技术且不含二氧化碳,但与传统工艺相比成本较高。其余工艺因其无污染性质而变得越来越重要,但技术仍处于中试规模水平,生产成本也很高,如下表所示。
氨是最广阔的化合物之一,全球年产量超过1.9亿吨(平均2019 - 2023年),其中约有1,850万吨。氨是衍生出所有基于氮的肥料的基本原料。制造氨是一种高能量密集型的Haber-Bosch工艺,因此,大气中的氮与化石燃料材料(天然气或煤炭)反应,也称为原料。氨植物需要大约32-3600万英国的热量天然气,以生产1吨氨。因此,氨植物通常位于天然气(例如在近东,俄罗斯联邦,特立尼达和多巴哥,阿尔及利亚和埃及)附近,尽管进口的液化天然气(LNG)越来越多地在印度使用。中国还具有从煤炭而不是天然气生产氨的能力。根据国际能源机构(IEA)的说法,氨产量约占最终能源总消耗总量的2.0%,占二氧化碳(CO 2)的1.3%的能源系统排放量。天然气基氨植物使用蒸汽改革过程,而煤炭植物则使用部分氧化或煤气化。
晶格、自旋和轨道自由度之间的相互作用。[1] 这些晶体可以容纳各种决定其性质的阳离子物种,从而产生不同的电子、磁性和光学行为。[2] 例如,它们的催化活性和性能可受到 A 位和/或 B 位阳离子取代或部分取代的显著影响。[3–6] 在众多用于催化应用的钙钛矿中,Sr 掺杂的镧铁氧体 (La 1 −xSr x FeO 3 ; LSFO) 在光催化水分解方面引起了特别的关注,[7–10] 其中 Fe 作为 B 位过渡金属阳离子驱动选择性氧化。 La 3 +阳离子被氧化态较低的阳离子(即Sr 2 +)取代,导致B阳离子部分氧化为氧化态较高和/或形成氧空位,从而产生更佳的催化活性。[10] 钙钛矿能够容纳多种取代基和掺杂剂,这为其组成和相关氧化态提供了很大的灵活性。这种可调性反过来又使得可以根据各种应用调整钙钛矿的物理化学性质,例如固体氧化物燃料电池(SOFC)中的阴极材料、非均相催化中的催化剂和氧载体、氧分离膜和固态气体传感器。[11]
摘要:本文介绍了针对当代能源和气候政策问题的新的基于自然问题的专家观点。本文提出了一个新兴的工业主张,将加拿大林业技术与石油和天然气行业开发的化学工程能力相结合。该主张是利用传统林业习惯留下的剩余材料中利用木纤维。该纤维被转运到中央设施,并通过部分氧化转化为氢和二氧化碳。该过程(以及所得的氢)保留了树木的碳捕获工作,因为二氧化碳被隔离在永久的地质存储中。项目开发人员已经创造了一词亮绿色,以将这种方法与电解剂产生的碳中性绿色氢区分开。讨论的方法是碳负的,有可能在工业过程中替代更肮脏的传统氢来源,并最终提供低碳替代石油的运输和移动性。本文讨论了一系列环境考虑。本文没有进行研究,它仅提供了具有潜在意义的新技术建议的观点,因为其明显的潜力可以使时间尺度与2050净零净政策范围一致。此外,提出的案例研究被认为是商业上可行的,而无需进行额外的公共政策干预措施以外的清洁燃料。此外,不需要新的技术发展。案例研究是一个正在进行的项目,而不是回顾性和历史性质。本文提出了一组问题,随着技术的发展,需要调查,审核和研究。