海洋生物的颜色范围令人难以置信。尽管在海洋动物物种中通常对结构性颜色机制和功能进行了充分的研究,但对于具有结构性色彩的海洋大量藻类(红色,绿色和棕色海藻)存在巨大的知识差距,这些现象在这些光合物生物体中的生物学意义。在这里,我们表明,红色藻类软骨crispus的配子体生命历史阶段的结构颜色在与其他颜料的协同作用中起着重要作用。,我们已经证明了蓝色结构色素减弱了更伟大的光,同时模仿了通过外部触角(植物质体)的绿色和红光收获,具有依赖强度依赖强度的光能机制。这些对结构颜色与光合光管理之间关系的见解进一步了解了我们对所涉及机制的理解。
疟原虫通过裂殖生殖复制,即异步核分裂,然后是半同步分裂和胞质分裂。成功的分裂需要双层膜结构,即内膜复合体 (IMC)。在这里,我们证明 Pf FBXO1 (PF3D7_0619700) 对无性分裂和配子体成熟都至关重要。在弓形虫中,FBXO1 同源物 Tg FBXO1 对子细胞支架的发育和子细胞 IMC 的组成部分至关重要。我们证明 Pf FBXO1 在发育中的裂殖子顶端区域附近形成类似的 IMC 起始支架,并单侧定位在恶性疟原虫的配子体中。虽然 Pf FBXO1 最初定位于分裂寄生虫的顶端区域,但随着分裂的进展,它会显示出类似 IMC 的定位。类似地,Pf FBXO1 定位于配子体中的 IMC 区域。诱导敲除 Pf FBXO1 后,寄生虫会发生异常的分节和有丝分裂,产生无法存活的子代。缺乏 Pf FBXO1 的配子体形状异常,无法完全成熟。蛋白质组学分析确定 Pf SKP1 是 Pf BXO1 的稳定相互作用伙伴之一,而其他主要蛋白质包括多种 IMC 膜蛋白和膜蛋白。我们假设 Pf FBXO1 是恶性疟原虫有性和无性阶段中 IMC 生物合成、染色体维持、囊泡运输和泛素介导的蛋白质翻译调控所必需的。
高温对水稻 (Oryza sativa) 的雄性育性有有害影响,但水稻雄配子体免受高温胁迫的机制尚不清楚。在这里,我们分离并鉴定了一种热敏感的雄性不育水稻突变体——热休克蛋白 60-3b (oshsp60-3b),它在最适温度下表现出正常的育性,但随着温度升高育性降低。高温会干扰 oshsp60-3b 花药中花粉淀粉颗粒的形成和活性氧 (ROS) 清除,导致细胞死亡和花粉败育。与突变体表型一致,OsHSP60-3B 在热休克反应中迅速上调,其蛋白质产物定位于质体。至关重要的是,OsHSP60-3B 的过表达增强了转基因植物花粉的耐热性。我们证实 OsHSP60-3B 与质体中的粉质胚乳 6 (FLO6) 相互作用,FLO6 是水稻花粉中淀粉颗粒形成的关键成分。Western blot 结果表明,高温下 oshsp60-3b 花药中的 FLO6 水平显著降低,表明当温度超过最佳条件时,OsHSP60-3B 是稳定 FLO6 所必需的。我们认为,在高温下,OsHSP60-3B 与 FLO6 相互作用,调节水稻花粉中的淀粉颗粒生物合成,并降低花药中的 ROS 水平,以确保水稻雄配子体正常发育。
摘要 通过将催化失活的 Cas9 (dCas9) 与组蛋白脱乙酰酶 (Sir2a) 或乙酰转移酶 (GCN5) 的活性域融合,该 CRISPR 干扰/激活 (CRISPRi/a) 系统允许在转录水平上进行基因调控,而不会导致寄生虫基因组发生永久性变化。然而,dCas9 的组成性表达对研究必需基因构成了挑战,这可能会导致寄生虫的适应性变化,掩盖真正的表型。在这里,我们开发了一种无泄漏诱导型 CRISPRi/a 系统,通过整合 DiCre/loxP 调节子,允许在雷帕霉素瞬时诱导下表达 dCas9-GCN5/-Sir2a,这允许通过引入针对其转录起始区的向导 RNA 来方便地转录调控感兴趣的基因。利用在无性红细胞发育过程中处于沉默状态或从低水平到高水平表达的八种基因,我们评估了该系统在无性寄生虫中的稳健性和多功能性。对于大多数分析的基因,这种可诱导的 CRISPRi/a 系统导致目标基因在 mRNA 水平上上调或下调 1.5 到 3 倍。PfK13 和 PfMYST 表达的改变导致对青蒿素的敏感性改变。对于自噬相关蛋白 18(与青蒿素抗性相关的必需基因),通过可诱导的 CRISPRi/a 获得了 0.2 倍的上调或下调,导致生长迟缓。对于配子发生的主要调节器 PfAP2-G,通过 CRISPRa 获得了 0.10 倍的 PfAP2-G 转录本增加,导致。诱导寄生虫的配子体血症高出 4 倍。此外,可诱导的 CRISPRi/a 还可以调节配子体中的基因表达。这种可诱导的表观遗传调控系统为研究恶性疟原虫的基因功能提供了一种快速方法。
有两个主要例子,即体细胞或配子体,每种都可以采用两种不同的发育途径:胚胎发生或De-Novo器官发生途径(Soriano等,2013; Long等,2022)。主要差异取决于可以增殖的细胞类型以及导致完全再生植物的发育途径。原始细胞可以是配子或体细胞。同时,发育途径可以涉及产生胚胎,也可以涉及不同器官中分生组织中心的分化(Lardon&Geelen,2020)。在体细胞再生的情况下,细胞起源于二倍体植物组织。再生植物通常具有与供体植物相同的遗传特征和倍增水平,尽管此过程也可以促进由于somaclonal变异而产生具有新特征的植物(Wang&Wang,2012;Galán-ávila等人,2020年)。
在植物中,胚胎发生和繁殖并不严格依赖于受精。一些物种可以在种子中无性地产生胚胎,这一过程称为无融合生殖。无融合生殖被定义为通过种子进行的克隆无性繁殖,其后代与母体基因型相同,并为开发优良品种提供了宝贵的机会,因为它在农作物中的诱导可以促进优良杂交基因型的开发和维持。在这篇综述中,我们总结了目前对无融合生殖的理解,并重点介绍了将无融合生殖方法成功引入有性作物的情况。此外,我们讨论了几个基因的过表达可以诱导体细胞胚胎发生,作为诱导孤雌生殖的候选基因,孤雌生殖是配子体无融合生殖的一种独特生殖方式。我们还总结了三种实现工程无融合生殖的方案,这将为实现无融合生殖提供更多机会。
和库克索尼亚,这也反映了功能和形态上的真正差异。Salopella 有相当类似苔类植物的叶状体——接缝、下摆、两个配子体瓣;类似芽杯和裂片的结构——似乎仍然适合整体潮湿和群居的苔类植物摇篮栖息地。4)库克索尼亚的苔类植物要少得多(我们在它们身上也没有发现芽杯),似乎已经准备好单独旅行,至少可以去更远的地方,有水平的主根,在地面以上,利用沿途小沟和凹槽的营养水分;厚厚的角质层可以抵御干燥和通常炎热的气候,当然还有与真菌的巧妙共生(它们都有),为它们的后代在仍然贫瘠的腹地提供水分和营养必不可少的背包。这完全取决于它们的培育。这些最伟大的英雄没有后盾。世界应该每年设立一个世界植物日,以纪念这些植物的无价贡献。
苔藓植物是研究植物进化、发育、植物-真菌共生、应激反应和配子发生的有用模型。此外,它们占主导地位的单倍体配子体阶段使它们成为功能基因组学研究的绝佳模型,允许通过 CRISPR 或同源重组进行直接的基因组编辑和基因敲除。然而,直到 2016 年,唯一公布的苔藓植物基因组序列是 Physcomitrium patens 的序列。近年来,其他几种苔藓植物基因组和转录组数据集已经面世,从而使得在进化研究中进行更好的比较基因组学成为可能。可用的苔藓植物基因组和转录组资源数量不断增加,产生了大量的注释、数据库和生物信息学工具来访问新数据,这些数据涵盖了该进化枝的多样性,其生物学特征包括与丛枝菌根真菌的关联、性染色体、低基因冗余或细胞器转录本的 RNA 编辑基因丢失等。在这里,我们提供了有关苔藓植物基因组和转录组数据库以及生物信息学工具的可用资源指南。
生长素诱导降解决定子 (AID) 系统是一种强大的化学-遗传方法,通过小分子进行条件性蛋白酶体降解来操纵内源蛋白质水平。到目前为止,该系统还没有在约氏疟原虫 (P. yoelii) 中进行改造,约氏疟原虫是一种重要且广泛使用的疟原虫啮齿动物寄生虫模型,可用于研究疟疾生物学。在这里,利用 CRISPR/Cas9 基因组编辑方法,我们生成了两种无标记转基因约氏疟原虫寄生虫系 (eef1a-Tir1 和 soap-Tir1),分别在 eef1a 和 soap 启动子下稳定表达水稻基因 tir1。这两条系在寄生虫生命周期中正常发育。在这些背景下,我们使用 CRISPR/Cas9 方法用 AID 基序标记两个基因 (cdc50c 和 fbxo1),并用生长素询问这两种蛋白质的表达。 eef1a - Tir1 系可在无性裂殖体和有性配子体阶段有效降解 AID 标记的内源性蛋白质,而 soap - Tir1 系可在动合子阶段降解蛋白质。这两个系将成为研究基于 P. yoelii 的疟原虫寄生虫生物学的有用资源。