铁路通过交通,速度和负载在这些年来大大增加,促使行业利益相关者和研究人员寻求一种替代的卧铺材料,该材料可以证明其具有较高的在职弯曲抵抗力并具有环境友好和耐用的能力。为了满足这些需求,并且由于环境问题,KENAF增强的聚酰胺已变得非常重要。但是,由于其在这方面的性能不可用,因此无法用作铁路轨道组件。在弥合此差距时,本文着重于制造和表征处理过的六种不同配方的KENAF纤维(TKF,10%加载间隔时为0-50%),用于铁路卧铺应用。结果表明,TKF的掺入影响了聚酰胺在吸水,负载能力和热稳定性方面的行为。
支持共价抑制剂药物发现/设计的工具的最新进展以及奥希替尼和伊布替尼等重磅药物的成功,导致人们对“亲电试剂优先”共价药物发现的兴趣日益浓厚。通过完整蛋白质质谱 (MS) 进行共价片段筛选已被证明是一种强大的工具,KRAS(G12C) 抑制剂的发现证明了这一点 [1]。支持共价片段筛选的其他检测方法,包括通过 GSH 检测评估弹头反应性以及通过蛋白酶消化和肽图分析识别结合位点,可进一步优化命中率。共价抑制是时间依赖性的,因此效力的首选测量方法是二级速率常数 kinact/Ki,而不是 IC50。
摘要 - 该文章提供了有关淀粉,羧基甲基纤维素,甲基双酰亚胺的信息,以及根据它们及其应用制造高弹性水凝胶的技术。使用文献给出了有关水凝胶研究水平的简要信息。根据百分比研究了水凝胶,淀粉和羧基甲基纤维素的合成过程,并在MG中表达水凝胶的肿胀,并在ML中表达了吸水。IR光谱,热分析,热重法,罗马光谱和水凝胶的SEM分析并分析。简单地说,10克水凝胶最多可容纳2.5-4升水。正确使用时,水凝胶可以为大多数农作物节省20-40%的灌溉水。最后,总结了水凝胶在农业植物中的重要性。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
专家信息:药物描述:Dioscomb®1000mg胶片涂层片;定性和定量组成:1膜涂层的片剂包含1000 mg微粉化的类黄酮,由900 mg diosmine和100 mg其他类黄酮组成,代表为紫杉胺。其他成分:片剂:硬脂酸镁,滑石,玉米淀粉,明胶,微晶纤维素(类型102)。膜盖:氧化铁红(E172),氧化铁黄色(E172),大戈尔3350,部分水解聚聚糖(乙烯基醇)(E1203)(E1203),钛氧化物(E171)(E171),Talkum(E553B),Maltodextrin,Guargalacttrin,guargalactomannan(E444),Hyhyractomannan(E4112)甘油三酸酯。应用领域:Dioscomb在成人中显示:下肢的慢性静脉不足治疗以下功能症状:严重的腿和肿胀,疼痛,下肢的夜间抽筋。对急性痔疮投诉的有症状治疗。禁忌症:对活性成分或第6.1节中提到的其他成分之一的超敏反应。药物治疗组:毛细管稳定我们;生物黄酮,二氨基,组合。ATC代码:C05CA53。 入学所有者:Extractumpharma Zrt。 H-1044布达佩斯,Megyeriút64。 匈牙利。 注册号:141737;处方义务/药房义务:没有处方,依据药学。ATC代码:C05CA53。入学所有者:Extractumpharma Zrt。H-1044布达佩斯,Megyeriút64。匈牙利。注册号:141737;处方义务/药房义务:没有处方,依据药学。站立了信息:05/2023;有关应用程序的警告和预防措施,与其他药物的相互作用以及其他相互作用,妊娠,哺乳和副作用的更多信息,请参见已发表的专家信息。
香豆素药物团是一种六元的芳族杂环,在许多天然产物和合成分子香豆素中都存在,是广泛丰富的天然杂环化合物,在产生各种生物学上有效的物质时广泛使用。香豆素磺酰胺杂种是具有药理学多种应用的优质化合物。例如抗炎,抗氧化剂,抗病毒,抗真菌,抗菌和抗癌特性。概述了香豆素磺酰胺核周围的许多取代,并通过提供广泛的药理学潜力,吸引了许多试图利用香豆素磺胺酰胺在药物设计中的研究人员的兴趣,并引起了新药物化合物的创造。通过基于香豆素磺胺酰胺的化合物的合成和药物化学的进步,可以使多种药物,尤其是在肿瘤学和碳酸酐酶抑制剂领域,使其成为可能。几种香豆素衍生物的生产和特殊生物学作用是这项综述研究的主要主题。要找到并创建可以帮助结构活动关系(SAR)研究的新的合成策略,还提到了某些创新的研究方法。香豆素的抗癌潜力最近引起了研究人员的关注,因为它们的生物学强大和低毒性。香豆素经常用于治疗白血病,前列腺癌和肾细胞癌。它们也可以用来减少放射治疗的负面影响。由于其在癌症治疗和光学化学疗法方面的治疗潜力,天然和合成的香豆素衍生物都引起了好奇心。
紫杉醇和卡铂(PC)通过细管(插管)作为静脉(静脉注射)在1小时内作为输液(滴水)(滴水)(豆蔻素)和30分钟(碳纤维素)(碳蛋白)(碳蛋白),并在21天(12周)的第1、8和15天(12周)(12周)。,然后是半柔软蛋白和环磷酰胺(EC),它们通过细管(插管)作为注射剂(静脉注射)作为注射剂,每21天通过快速流动的输注(滴水)将其送入4个周期(12周)。
代谢重编程在癌症发展和患者生存中起关键作用。与其他B细胞恶性肿瘤相比,慢性淋巴细胞性白血病(CLL)的代谢不是高度活跃(1);然而,它发展出代谢修饰的基础,其进展和对药物的抵抗力(2-4)。这些修饰中的一些影响氧化磷酸化(OXPHOS),并帮助癌细胞使用葡萄糖底物的替代方法来产生三磷酸腺苷(ATP)(ATP)(5)。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。 已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。 oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。 由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。 然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。 OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。 随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。 谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。 谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。ATP是OXPHOS的最终产品,提供了满足CLL细胞高能量需求的燃料。已经表明,ATP的药理耗竭抑制RNA的合成并导致CLL细胞的凋亡(6)。oxphos取决于三羧酸(TCA)循环的活性,该循环产生了电子传输链的能量前体。由葡萄糖产生的乙酰辅酶A是TCA循环中最著名的底物。然而,谷氨酰胺是癌细胞中Oxphos的主要驱动力,而谷氨酰胺限制,而不是葡萄糖有助于降低氧气摄取,并介导癌细胞的凋亡(7、8)。OXPHOS无葡萄糖的加油所需的第一步是谷氨酰胺向谷氨酸的转化。随后,谷氨酸为合成-Ketoglutarate(TCA循环的关键代谢产物)提供了底物(9)。谷氨酰胺代谢中的限速线粒体酶是谷氨酰胺酶,它催化谷氨酰胺转化为谷氨酸和氨。谷氨酰胺酶具有2种同工型:肾型谷氨酰胺酶-1(GLS-1)和肝型谷氨酰胺酶-2。GLS-1反过来具有2种替代剪接变体:谷氨酰胺酶C(GAC)和肾脏谷氨酰胺酶(KGA)。谷氨酰胺酶C的催化活性高于肾脏谷氨酰胺酶,通常在白血病细胞中上调(10,11)。已经表明,急性髓细胞性白血病(AML)细胞系中GLS-1基因的敲低破坏了谷氨酰胺驱动的OXPHOS,导致细胞增殖减少和凋亡诱导(10)。这表明改变使用谷氨酰胺的药物可能对CLL治疗有用。CLL细胞高度依赖于B细胞受体途径,该途径为细胞发育和成熟提供了信号。B细胞受体刺激的终点是NF-K B和MAP激酶途径的激活,这导致CLL细胞的增殖,迁移和存活。布鲁顿酪氨酸激酶(BTK)在通过B细胞 - 受体信号级联的信号转导中起关键作用。因此,它成为共价BTK抑制剂(例如ibrutinib)的有效靶标(12)。CLL中最常见的细胞遗传突变是13Q缺失(DEL [13Q]),在约50%的CLL病例中发现(13,14)。在DEL [13Q] CLL细胞中,删除了microRNA(miR)簇miR-15a/miR-16-1,导致其肿瘤抑制功能的丧失以及抗凋亡蛋白B细胞淋巴瘤-2(BCL-2)和髓样细胞白血病1(MCL-1)的过表达。失调的BCl-2表达有助于白血病细胞的存活和积累,而MCL-1蛋白对CLL细胞产生保护作用,抑制了凋亡(15、16)。因此,Bcl-2抑制剂venetoclax
本文档中包含的信息是NCCP和ISMO或IHS专业人员就当前接受治疗方法的看法的声明。任何寻求申请或咨询这些文件的临床医生都预计在个别临床情况下将使用独立的医疗判断来确定任何患者的护理或治疗。使用这些文件是处方临床医生的责任,并受HSE的使用条款的约束,请访问http://www.hse.ie/eng/eng/disclaimer
摘要 代谢异常是肿瘤的重要特征,谷氨酰胺-精氨酸-脯氨酸轴是肿瘤代谢的重要节点,在氨基酸代谢中起着重要作用,同时也是其他非必需氨基酸和必需代谢物合成的支架。本文就(1)肿瘤细胞对谷氨酰胺的依赖,谷氨酰胺转运和代谢加速;(2)谷氨酰胺进入细胞外、细胞内合成及细胞内谷氨酰胺命运的调控方式;(3)谷氨酰胺、脯氨酸和精氨酸代谢途径及其相互作用;(4)针对谷氨酰胺-精氨酸-脯氨酸代谢系统的肿瘤治疗研究进展作一综述,重点总结了针对该代谢系统关键酶之一P5CS(ALDH18A1)的治疗研究进展,为针对肿瘤代谢特点的治疗提供新的依据。