10:3594-3603。46 David S,Bouchard C,Tsatas 0,Giftochristos N.巨噬细胞可以改变成人哺乳动物中枢神经系统的非允许性。Neuron 1990:5:463-469。47 Ossowski L.纤溶酶原激活剂依赖性途径在雏鸡胚胎中人类肿瘤细胞的传播中。Cell 1988:52:321-328。 48 Gloor S,Odink K,Guenther J,Nick H,MonardD。具有蛋白酶抑制活性的神经胶质衍生的神经突促进因子属于蛋白酶Nexins。 Cell 1986:47:687-693。 49 Pittman RN,Patterson Ph。 心脏细胞释放的神经元激活剂的抑制剂的表征。 J Neurosci 1987:7:2664-2673。 50 Fawcett JW,HousdenE。蛋白酶抑制剂对通过星形胶质细胞生长的影响。 发展1990:109:59-66。Cell 1988:52:321-328。48 Gloor S,Odink K,Guenther J,Nick H,MonardD。具有蛋白酶抑制活性的神经胶质衍生的神经突促进因子属于蛋白酶Nexins。Cell 1986:47:687-693。 49 Pittman RN,Patterson Ph。 心脏细胞释放的神经元激活剂的抑制剂的表征。 J Neurosci 1987:7:2664-2673。 50 Fawcett JW,HousdenE。蛋白酶抑制剂对通过星形胶质细胞生长的影响。 发展1990:109:59-66。Cell 1986:47:687-693。49 Pittman RN,Patterson Ph。 心脏细胞释放的神经元激活剂的抑制剂的表征。 J Neurosci 1987:7:2664-2673。 50 Fawcett JW,HousdenE。蛋白酶抑制剂对通过星形胶质细胞生长的影响。 发展1990:109:59-66。49 Pittman RN,Patterson Ph。心脏细胞释放的神经元激活剂的抑制剂的表征。J Neurosci 1987:7:2664-2673。50 Fawcett JW,HousdenE。蛋白酶抑制剂对通过星形胶质细胞生长的影响。发展1990:109:59-66。
中风是美国最常见的后天残疾原因,也是第五大死亡原因。大血管闭塞 (LVO) 引起的急性缺血性中风 (AIS) 的治疗方案是使用阿替普酶 (重组组织型纤溶酶原激活剂) 静脉溶栓 4.5 小时内快速再通闭塞的大血管,并在 6 小时内进行机械血栓切除术 (MT)。1 无论是哪种治疗,确定大量可挽救的缺血半暗影对于患者是否适合接受治疗至关重要。最近的随机对照试验——接受 Trevo 神经干预的觉醒和晚期卒中分类的临床不匹配 (DAWN)2、缺血性卒中影像学评估后的血管内治疗 3 (DEFUSE-3)3 和觉醒性卒中基于 MRI 的血栓溶解的有效性和安全性 (WAKE-UP)4——彻底改变了 LVO 卒中患者的管理,为进一步革命性地选择适合接受晚期 MT(最长 24 小时)的患者奠定了基础,无论他们是否因同一次缺血性卒中事件接受静脉阿替普酶治疗。一项正在进行的 III 期试验(4.5 至 24 小时内卒中患者中的替奈普酶;TIMELESS)正在研究替奈普酶在 4.5 至 24 小时延长时间窗内的疗效。 5 由于证据的快速变化,美国心脏协会/美国卒中协会从 2018 年更新了其急性卒中指南,取代了 2013 年的指南。6、7 在此背景下,从“时间治疗窗”的概念转变为考虑侧支灌注程度的“脑组织窗”,结合先进的神经影像学方法,如 CT 灌注和带有 FLAIR 的 MR 成像、扩散和灌注加权成像,用于评估缺血核心(不可逆损伤组织)和缺血半暗影(潜在可逆性缺血组织)。8 如何正确选择此类患者的最佳方法仍存在争议。尽管如此,由于再灌注治疗的益处会随着时间的推移而减小,因此在细胞死亡之前尽快治疗患者至关重要。但是,一些挑战可能会限制 LVO 卒中干预措施(特别是 MT)的广泛临床应用。事实上,截至 2016 年,美国仅进行了 13,000 例 MT(占 AIS 总病例的 2%)。9 首先,仅约 10% 的 AIS 患者在前循环中有近端 LVO,并且存在
美国国家神经疾病和中风研究所 (NINDS) 的使命是寻求有关大脑和神经系统的基础知识,并利用这些知识减轻所有人的神经疾病负担。2025 年将是我们在神经科学研究领域处于领先地位的 75 周年,这是一个里程碑,也是我们庆祝成就并展望未来进步的机会。尽管神经系统的复杂性及其对损伤的敏感性带来了巨大的挑战,但数十年的基础、转化和临床研究已经为以前无法治愈的疾病带来了治疗方法,并带来了研究大脑发育和功能的新工具,涵盖从细胞到回路再到行为的各个层面。我们的成就给了我们希望,尽管需求仍然艰巨:神经系统疾病是全球致残的主要原因和第二大死亡原因,1 而且随着人口老龄化,中风和神经退行性疾病等疾病的影响将继续增长。为了满足这些需求,并在 NINDS 战略计划的指导下,我们正在投资创新和严谨的研究,培养一支强大而包容的研究队伍,并与我们的许多合作伙伴密切合作,包括有神经系统疾病经历的人士。 推动治疗神经系统疾病的新方法 当 NINDS 于 1950 年成立时,我们对中风知之甚少,医生对中风患者几乎无能为力。随着研究确定了高血压等可治疗的风险因素,中风死亡率开始下降,2在 1969 年至 2013 年间下降了 77%。另一项重大进展是溶栓药物组织型纤溶酶原激活剂 (tPA),这是第一个治疗急性缺血性中风的救命疗法。 NINDS 在 tPA 的成功中发挥了核心作用,3 资助了为其使用提供理论依据的早期研究,并领导了支持 1996 年美国食品药品监督管理局 (FDA) 批准的关键临床试验。NINDS 还发起了一场公共运动,以促进对中风的紧急治疗,并率先制定了快速患者评估和治疗方案,彻底改变了中风护理。这种推动中风护理的势头一直在持续,这得益于开发和应用新的脑成像方法和手术方法的研究。2016 年,通过我们的中风试验网络 (NIH StrokeNet) 进行的一项临床试验推动了治疗指南的更新,以扩大血管内血栓切除术 (EVT) 或手术血栓去除的使用。4 尽管取得了这些进展,但美国每年仍有近 80 万人中风,5 经过几十年的下降,中风死亡率近年来已趋于平稳,6 令人担忧
中风是一种全球范围内普遍存在的疾病,是美国发病率最高的疾病之一,也是美国第五大死亡原因,其中急性缺血性中风 (AIS) 是最常见的病因(Goyal 等人,2016 年)。目前,FDA 批准的唯一治疗 AIS 的药物是组织型纤溶酶原激活剂 (tPA),它可以促进血凝块降解和再灌注。对于某些大血管闭塞患者,在 tPA 溶栓治疗的基础上加用机械血栓切除术 (MT) 已成为血运重建的标准治疗方法(Albers 等人,2018 年;Nogueira 等人,2018 年)。尽管如此,AIS 患者仍然面临着不可接受的高死亡和残疾风险(Albers 等人,2018 年;Nogueira 等人,2018 年),因此迫切需要其他疗法。再灌注的重点是恢复 AIS 后的血流,而神经保护是指可以减少缺血继发性脑损伤的策略,但这目前仍然是一个未满足的临床需求。虽然已经在动物实验和一些人体试验中探索了许多其他神经保护候选药物(Saver 等人,2015 年;Hill 等人,2020 年),但没有一种能够成功改善 AIS 的结果。尽管这些研究大多是阴性试验,但它们为如何设计未来的试验以获得更好的反应提供了宝贵的见解——具体来说,是通过影响多种损伤反应途径来理解缺血级联的复杂性的疗法。我们最近发现了一种名为 MCB-613 的类固醇受体辅激活剂 (SRC) 的小分子刺激剂 (Wang 等人,2015 年),它通过直接保护心肌细胞、减轻免疫细胞浸润和减弱病理性成纤维细胞重塑来减少心肌梗死后的缺血性损伤 (Mullany 等人,2020 年)。虽然该研究结果对于心脏保护非常有希望,但我们认为这也是 AIS 后神经保护的主要候选药物,因为心脏和大脑在急性缺血性损伤后组织损伤的许多主要驱动因素方面是相同的,包括氧化应激和炎症。SRC 是一个核蛋白家族 (SRC-1、-2 和 -3),它们普遍表达并是约 80% 所有基因转录所必需的 (Lanz 等人,2010 年)。因此,SRC 激活与多种细胞功能有关,包括细胞增殖、再生、免疫调节、抗氧化防御和血管生成 ( Lonard 和 O'Malley ,2007 年;Lanz 等人,2010 年)。自 27 年前发现 SRC 以来,我们的团队已经证明 SRC 是生长和修复的广泛组织者 ( Onate 等人,1995 年)。为了在损伤后实现最佳组织愈合,损伤反应需要强大的转录组反应和细胞重编程,包括协调基因表达程序。组织损伤后,SRC 通过协调各种基因表达程序来维持细胞稳态,包括抗氧化防御、细胞存活和血管生成(Lonard 和 O'Malley,2007 年;Chen X. 等,2010 年;Lanz 等,
衍生因素在黄褐斑发病机制中的作用。临床和实验皮肤病学,41,601-609。https://doi.org/10.1111/ ced.12874 Cardinali, G., Ceccarelli, S., Kovacs, D., Aspite, N., Lotti, LV, Torrisi, MR, & Picardo, M. (2005)。角质形成细胞生长因子促进黑素体转移到角质形成细胞。皮肤病学研究杂志,125 (6), 1190-1199。https://doi. org/10.1111/j.0022-202X.2005.23929.x Cardinali, G., Ceccarelli, S., Kovacs, D., Aspite, N., Lotti, LV, Torrisi, MR, & Picardo, M. (2005). 角质形成细胞生长因子促进黑色素体转移到角质形成细胞。《皮肤病学研究杂志》,125,1190-1199 页。https://doi. org/10.1111/j.0022-202X.2005.23929.x Castellino, FJ, & Ploplis, VA (2005). 纤溶酶原/纤溶酶系统的结构和功能。血栓形成和止血, 93 (4), 647–654。https://doi.org/10.1160/TH04-12-0842 Chan, R., Park, KC, Lee, MH, Lee, ES, Chang, SE, Leow, YH, Tay, YK, Legarda-Montinola, F., Tsai, RY, Tsai, TH, Shek, S., Kerrouche, N., Thomas, G., & Verallo-Rowell, V. (2008)。一项随机对照试验,比较固定三联组合(氟轻松 001、对苯二酚 4、维甲酸 005)与对苯二酚 4 乳膏治疗中度至重度黄褐斑亚洲患者的疗效和安全性。英国皮肤病学杂志, 159 (3):697–703。 Chang, GC, Yang, TY, Chen, KC, Yin, MC, Wang, RC, & Lin, YC (2004)。癌症患者治疗的并发症。临床肿瘤学杂志,22,4646–4648。https://doi.org/10.1200/ JCO.2004.02.168 Chang, WC, Shi, GY, Chow, YH, Chang, LC, Hau, JS, Lin, MT, Jen, CJ, Wing, LY, & Wu, HL (1993)。人纤溶酶诱导内皮细胞中受体介导的花生四烯酸释放与 G 蛋白结合。美国生理学杂志,264 (2 Pt 1),C271–C281。 https://doi.org/10.1152/ajpcell.1993.264.2.C271 Cichorek, M.、Wachulska, M.、Stasiewicz, A. 和 Tymińska, A. (2013)。皮肤黑素细胞:生物学和发育。皮肤病学和过敏学进展,30 (1),30–41。https://doi.org/10.5114/pdia.2013.33376 Darji, K.、Varade, R.、West, D.、Armbrecht, ES 和 Guo, MA (2017)。寻常痤疮患者炎症后色素沉着的社会心理影响。临床与美容皮肤病学杂志,10 (5),18–23。Davis, EC 和 Callender, VD (2010)。炎症后色素沉着:有色皮肤流行病学、临床特征和治疗选择的综述。临床和美容皮肤病学杂志,3 (7),20–31。Duval, C., Chagnoleau, C., Pouradier, F., Sextius, P., Condom, E., & Bernerd, F. (2012)。含有黑色素细胞的人体皮肤模型:角质形成细胞生长因子对组成性色素沉着的重要作用——对 α -黑素细胞刺激激素和福斯高林的功能性反应。组织工程 C 部分:方法,18 (12),947–957。https://doi.org/10.1089/ten.tec.2011.0676 Gilchrest, BA, Soter, NA, Stoff, JS, & Mihm, MC Jr (1981)。人类晒伤反应:组织学和生化研究。美国皮肤病学会杂志,5,411–422。https://doi.org/10.1016/S0190-9622(81)70103-8
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。