白杨是一种可再生和可持续的资源。自 1906 年以来,American Excelsior 一直使用位于威斯康星州赖斯湖的五大湖白杨制造行业领先的环保解决方案。我们所有的白杨都是负责任地从 150 英里半径范围内的公共和私有森林中采伐的,这些森林可能专门为白杨生产而管理,也可能没有。白杨是自我繁殖的,在被采伐或被吹倒后,它的根系会发出新芽,从而无需重新播种。白杨是一种先锋树种,因此采伐通常通过皆伐来完成,这很快就会提供非常宝贵、茂密的野生动物栖息地。许多野生动物在其生命周期的各个阶段都依赖于白杨林。白杨是一种耐寒树种,其根系可以存活数千年。用于可持续 Curlex 纤维的五大湖白杨的平均周期为 25-35 年。
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
在采伐和道路设计中使用激光雷达地形的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 的论文发表于 2004 年 6 月 13 日至 16 日在加拿大不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地条件下的森林作业联合会议和第 12 届国际山地伐木会议。摘要 机载激光测高 (Lidar) 可以生成细节丰富、精度极高的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形可以识别可能的着陆位置、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计走向更好的选择,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔会失败,这些失败的表示方式将决定激光雷达的可靠性和道路设计价值。我们讨论了首次使用激光雷达测绘塔霍马州立森林的经验,该森林位于 Mt. 南部。雷尼尔山。这种详细的地形测绘用于森林作业设计,例如着陆点和道路位置,作为基于流域的收获和运输计划的一部分。基于激光雷达的办公室设计随后进行了现场验证。对于森林工程设计而言,此类 DEM 成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致优秀或错误的测绘细节。我们讨论了各种方法,这些方法可以识别地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。观察树冠下的情况木材采伐和道路规划中经常出现的一个问题是,用于采伐的树木会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航拍照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是树冠顶部的地图,带有假定树高的偏移。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中可能至关重要的细微地形变化并未反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形区域,这些区域可能会给采伐和道路建设带来困难。激光雷达的工作原理是拍摄数百万张树冠还会遮挡可作为方便着陆点和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林冠层下也可以进行详细的地形测绘。
在采伐和道路设计中使用激光雷达地形的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 的论文发表于 2004 年 6 月 13 日至 16 日在加拿大不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地条件下的森林作业联合会议和第 12 届国际山地伐木会议。摘要 机载激光测高 (Lidar) 可以生成细节丰富、精度极高的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形可以识别可能的着陆位置、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计走向更好的选择,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔会失败,这些失败的表示方式将决定激光雷达的可靠性和道路设计价值。我们讨论了首次使用激光雷达测绘塔霍马州立森林的经验,该森林位于 Mt. 南部。雷尼尔山。这种详细的地形测绘用于森林作业设计,例如着陆点和道路位置,作为基于流域的收获和运输计划的一部分。基于激光雷达的办公室设计随后进行了现场验证。对于森林工程设计而言,此类 DEM 成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致出色或错误的测绘细节。我们讨论了各种方法,这些方法可以识别地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。观察树冠下的情况木材采伐和道路规划中经常出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航拍照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是树冠顶部的地图,带有假定树高的偏移。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中可能至关重要的细微地形变化并未反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形区域,这些区域可能会给采伐和道路建设带来困难。激光雷达的工作原理是拍摄数百万张树冠还会遮挡可作为方便着陆点和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林冠层下也可以进行详细的地形测绘。
• 2000、2006、2012 – 通过 PNW Station 发布 • 2016 – 待审查 • 每年 >1.4 BBF Scribner 木材采伐量 • >70 个活跃设施 • >14 亿美元的销售额 • ~1.9 BBF 木材
约有 1500 万立方米的木材未被使用,可用于吸引新的国内和国际市场的投资。安大略省皇家森林的已批准森林管理计划确定每年可持续采伐的木材供应量约为 3000 万立方米,这一数量远远低于我们管理的森林目前每年生产的 3800 万立方米。每年采伐的皇家森林不到百分之零点五。安大略省正在寻求扩大其林业产品的新市场,同时努力加强现有业务。许多新的和创新的林业产品依赖于木材、定向刨花板、单板和纸浆等初级生产商的原材料。生产这些创新新产品对材料的需求有助于加强现有的供应链。通过利用这些木材,我们正在为依赖森林的土著居民和其他安大略省社区提供更多的经济机会。
机载激光扫描 (ALS)、现场图和预测模型的结合使用是当今芬兰森林管理导向清单中最重要的信息来源 (Maltamo 和 Packalén 2014)。ALS 也是国家森林清单 (Grafström 和 Hedström Ringvall 2013) 和收获前林分测量 (Peuhkurinen 等人2007)。在实际的森林规划中,树种需要信息 (Packalén 2009)。航空影像通常用于解释树木种类和其他难以通过激光扫描数据预测的属性(例如 Packalén 和 Maltamo 2007;Ørka 等人2013)。清单验证表明,基于 ALS 数据的清单(Wallenius 等人2012)比使用传统基于现场的方法(Suvanto 等人2005)获得的清单更准确。此外,无论是在评估树种特定属性(例如 Packalén 和 Maltamo 2007;Breidenbach 等人2010)还是在测量单个树木属性(例如 Korpela 等人2010;Vauhkonen 2010;Yao 等人2012;Silva 等人2016)时,准确度至少与传统的现场评估相同。然而,需要进一步研究以提高基于 ALS 的森林资源清查中树木质量评估的准确性(Wallenius 等人2012)。芬兰森林中心收集、维护和分发芬兰森林的林分属性信息(芬兰森林中心 2019a)。数据基于实地调查和遥感的结合使用。模型用于预测木材体积和更新数据。实地图用作训练数据,ALS 用于将结果推广到大面积调查区域。由于《森林信息法》的修订于 2018 年 3 月初生效,许多信息通过 Metsään.fi 服务(https://www.metsaan.fi/)向公众开放。关于按树种划分的锯木和纸浆木材采伐的信息对于木材销售和采伐作业规划至关重要。树木质量特征信息也很重要(Holopainen 等人2013 年)。在预测木材种类时,训练数据应具有关于锯木和纸浆木材移除量的精确林分水平信息,这在实践中只能由采伐机测量(Malinen 等人2003 年)。2012 年;White 等人2013 年)。先前关于 ALS 清单准确性的研究通常将基于 ALS 的林分属性估计与实地测量进行比较(例如,Næsset 2007;Wallenius 等人。这些比较的问题在于,部分实地“测量”是模型预测。例如,木材分类量就是这种情况,它基于锥度模型和预测的质量扣除。也有一些尝试将采伐机数据用于类似目的(Siipilehto 等人。2016;Pesonen 2017)。采伐机数据也被用作训练
在生物能源领域,入侵灌木林(侵占型灌木林)的使用为生物质电厂生产和使用木屑、木屑颗粒或进行木材气化提供了潜力。国有能源运营商 NamPower 还计划建设一座 40 兆瓦的生物质发电厂。灌木林侵占面积达约 4500 万公顷,可提供大量木材(约 1400 万吨/年),这些木材可以每年可持续采伐,对环境产生积极的生态影响(地下水、生物多样性等)。然而,挑战在于灌木林的采伐和物流。因此,目前只有约 10% 的生物质潜力得到商业开发,主要用于木炭生产,并越来越多地用于材料使用途径(动物饲料、生物炭)。纳米比亚是世界第五大木炭出口国,出口量约为 210,000 吨。由于土地与粮食生产的竞争以及水资源短缺,纳米比亚无法通过专门种植的能源作物来生产生物能源。