迫切需要更好地了解威胁赤道地区人口的环境现象:气候变化和地质灾害造成的台风、洪水、地震、海啸、火山、野火、污染等正在给社会造成巨大破坏,给经济造成巨大经济损失。虽然存在预测模型,但准确性有限,而且现有数据在赤道地区以上采样率较低,尤其是对于快速变化的现象。为了改善这种情况,需要新的数据。点击阅读更多。
测量占空比的一种简单方法是使用微控制器。只需将传感器输出连接到微控制器的输入之一即可。借助一个小程序,可以感知输入是高还是低。由于控制器的指令时间,此采样速度受到限制。因此,要达到所需的精度,必须在多个传感器周期内进行采样。这种工作方式还具有过滤噪声的优势。从信号处理理论可以得出,传感器信号频率、采样率和采样噪声之间存在固定的比率。这种采样噪声限制了精度,相当于:
摘要 - 时间间隔ADC广泛用于高速应用中。该结构可以通过并联多重ADC来增加整个转换器的有效采样率。但是,该体系结构将受到不同子转换器之间的不匹配,包括偏移,增益和时机。时机偏斜会产生动态错误,从而提出更大的挑战。本文介绍了通过两种背景盲目校准技术来解决TI ADC中正时不匹配的最新最新解决方案:a)基于确定性均衡和b)基于输入信号的统计信息的方法。
许多最新标准都针对相对较短距离内的高数据速率通信,例如未授权 60GHz 频段的 IEEE802.11ay 标准。典型应用是视频流、无线对接等高数据速率应用的电缆替代……或者,通过利用大规模天线阵列,还可以实现小型蜂窝回程和固定无线接入等应用。毫米波频率也用于高分辨率雷达系统(例如在未授权的 79GHz 频段),从而实现小型、低成本和低功耗的解决方案。所有这些应用的共同点是它们使用相对简单的调制方案和非常宽的通道带宽,从而对模数转换器的分辨率和采样率要求非常高。
振动台位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可选择运行需要采样频率低于 120Hz 的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可选择根据 ANSI S2.62-2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
振动器位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可以选择运行需要低于 120Hz 采样频率的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可以选择根据 ANSI S2.62- 2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
数字计量是一个庞大且不断发展的领域,应用于从白色家电到精密医疗仪器和先进电子产品的所有工业领域。它现在是仪器仪表领域的首选方法,传感和测量越来越依赖于采样测量的模拟到数字转换。传感器的模拟电压或电流会尽快使用 ADC 转换为数字量。一旦电信号被数字化,诸如基本均方根 (RMS) 值、峰值、波峰因数和谐波含量等量都可以直接计算,而不需要每个量都需要特定的测量和校准。精密集成电路和测量设备的最新工业研究与开发带来了采样率和潜在精度的重大变化,然而,测量方法却未能跟上要求的步伐。
摘要 MIL-STD-1553 为飞行界提供了良好的服务。然而,近年来出现了几种新的高速总线标准,它们在数据吞吐量和增加的地址空间等各个方面都优于 1553。在此期间,任务要求(包括视频和音频)变得更加数据密集。虽然其中一些总线最初不是为航空电子行业设计的(例如以太网、FireWire 和光纤通道),但它们可能作为用于设置和数据采集的高速商用现货 (COTS) 解决方案而受到关注。这些总线不仅在总采样率方面提供了改进的整体系统性能,而且还简化了现有的数据采集系统架构。它们需要更少的高带宽链路,可以用于设置和数据。本文探讨了其中的一些问题,特别关注 IEEE1394,也就是众所周知的 FireWire。1.简介
(i) DSO 4 通道,100MHz,采样率为 2 GS/s (ii) 任意波函数发生器双通道,25 MHz,采样率为 125 MS/s (iii) 375 激光系统用于钙离子化 (iv) 422 激光系统用于钙离子化 (v) 850 激光系统用于钙离子激光再泵浦 (vi) 854 激光系统用于钙离子激光再泵浦 (vii) 866 激光系统用于钙离子激光再泵浦 (viii) 397 激光系统用于钙离子激光冷却 (ix) 780 激光系统用于铷原子冷却 (x) 780 激光系统用于铷原子冷却 (xi) 用于参考腔的模拟电子模块 (xii) Kimball Physics 两个 16 端口真空室,由 SS 316L(非磁性钢)制成,用于铷原子阱和钙离子阱实验 (xiii) 精度为 10 MHz 的激光波长计 (xiv) RF频谱分析仪 10kHz-9GHz (xv) 用于 Rb 原子实验和 Ca 离子阱实验的真空组件(CF 毛坯、CF 和 KF 波纹管、CF 锥形接头、CF I 型件、CF T 型件、CF 四通)(xvi) 主动隔振光学台(10 英尺 X 4 英尺)2 个。(xvii) 示波器 70 MHz 4 通道 - 2 个 (xviii) 任意波函数发生器 - 2 通道 - DC - 20 MHz - 3 个 (xix) 低纹波和低失真可编程双极直流电源(0-30V,0-5A)- 3 个 (xx) 数据采集系统 - 200 MHz DSO(数字存储示波器)
摘要 — 未来,移动用例将依赖于精确的预测,服务质量 (QoS) 预测就是一个突出的例子。本文介绍了当今车辆的实际测量结果,以支持未来强大的 QoS 预测。基于专门的受控测量活动,我们重点介绍了影响收集的数据集的无线环境和设备特性(如采样率)的各个方面。如果处理不当,这些特性可能会妨碍基于人工智能的 QoS 预测算法的性能。因此,我们还提供了有关数据集特征的见解,应进一步利用这些见解来更轻松地采用基于 AI 的算法。新的基于 AI 的算法应该能够在非常多样化的无线电环境中运行,并从不同设备捕获数据。我们提供了一些示例,强调了彻底了解数据集及其动态的重要性。