8.1 数字音频简介 219 8.2 二进制 221 8.3 转换 224 8.4 采样和混叠 224 8.5 采样率的选择 228 8.6 采样时钟抖动 228 8.7 光圈效应 230 8.8 量化 232 8.9 量化误差 234 8.10 抖动简介 238 8.11 重新量化和数字抖动 241 8.12 抖动技术 244 8.12.1 矩形 pdf 抖动 244 8.12.2 三角形 pdf 抖动 246 8.12.3 高斯 pdf 抖动 247 8.13 基本数模转换 247 8.14 基本模数转换 255 8.15 替代转换器 260 8.16 过采样 263 8.17 无噪声整形的过采样 269 8.18 噪声整形 270 8.19 噪声整形 ADC 274 8.20 一位 DAC 277 8.21 一位噪声整形 ADC 279 8.22 二进制补码编码 281 8.23 数字音频中的电平 283 8.24 AES/EBU 接口 285 参考文献 299
抽象的长读测序技术(例如牛津纳米孔(ONT))可直接检测DNA碱基修饰。虽然已经开发了几种工具和模型来鉴定纳米孔数据中的DNA甲基化,但它们通常仅限于5-甲基胞嘧啶(5MC)和较老的流循环(FC)化学。新模型的性能和准确性,包括由ONT开发的模型,尤其是对于他们的新FC化学(R10.4.1)和采样率(5KHz)而言。在这里,使用多种细菌和人类数据集,我们系统地评估了5MC(CPG和非CPG环境),6-甲基二氨酸和4-甲基环霉素的现有甲基化模型的性能。我们还展示了其他参数的效果,例如测序深度,读取质量,基本模式,更重要的是,相邻DNA修饰的存在。因此,我们的工作为利用纳米孔测序研究DNA修饰的研究人员提供了重要信息,并在当前一代甲基化检测模型中突出显示了空隙。
基于鳍式场效应晶体管 (FinFET) 的模拟电路正逐渐取代基于金属氧化物半导体场效应晶体管 (MOSFET) 的电路,因为其稳定性和高频操作而变得越来越重要。构成大多数模拟电路子块的比较器是使用运算跨导放大器 (OTA) 设计的。OTA 采用新的设计程序设计,比较器电路是将子电路与 OTA 集成在一起设计的。设计并集成了比较器设计的构建块,例如输入电平转换器、带有共源共栅级的差分对和用于输出摆幅的 AB 类放大器。在反馈路径中使用折叠共源共栅电路来将共模输入值保持为常数,以便差分对放大差分信号。比较器的增益达到 100 dB 以上,相位裕度为 65°,共模抑制比 (CMRR) 高于 70 dB,输出摆幅从轨到轨。该电路提供 5 GHz 的单位增益带宽,适用于高采样率数据转换器电路。
8.1 数字音频简介 219 8.2 二进制 221 8.3 转换 224 8.4 采样和混叠 224 8.5 采样率的选择 228 8.6 采样时钟抖动 228 8.7 光圈效应 230 8.8 量化 232 8.9 量化误差 234 8.10 抖动简介 238 8.11 重新量化和数字抖动 241 8.12 抖动技术 244 8.12.1 矩形 pdf 抖动 244 8.12.2 三角形 pdf 抖动 246 8.12.3 高斯 pdf 抖动 247 8.13 基本数模转换 247 8.14 基本模数转换 255 8.15 替代方法转换器 260 8.16 过采样 263 8.17 无噪声整形的过采样 269 8.18 噪声整形 270 8.19 噪声整形 ADC 274 8.20 一位 DAC 277 8.21 一位噪声整形 ADC 279 8.22 二进制补码编码 281 8.23 数字音频中的电平 283 8.24 AES/EBU 接口 285 参考文献 299
尽管过去几十年来信息技术、微电子、人工传感和信息处理领域取得了令人瞩目的进步,但实际系统在处理现实任务时仍然远不如生物系统有效。这种分析导致了神经形态工程领域的出现,特别是基于事件的传感,旨在构建基于硅的传感和计算设备,模仿生物系统获取和处理信息的方式。与传统图像传感器不同,EB 传感器不对所有像素使用通用采样率(称为帧速率),而是每个像素连续跟踪入射光量并在变化时异步采样信号。这种获取稀疏数据的高效方式、高时间分辨率以及对不受控制的照明条件的鲁棒性(具有高动态范围)是 EB 传感过程的特点,使 EB 成像对众多应用具有吸引力,例如工业自动化、过程监控、监控、物联网、AR/VR、汽车和移动环境。
1.AD9648 采用单个 1.8 V 模拟电源供电,并具有单独的数字输出驱动器电源,以适应 1.8 V CMOS 或 LVDS 逻辑系列。2.获得专利的采样保持电路在高达 200 MHz 的输入频率下仍能保持出色的性能,并且专为低成本、低功耗和易用性而设计。3.标准串行端口接口支持各种产品特性和功能,例如数据输出格式、内部时钟分频器、关断、DCO/数据时序和偏移调整。4.AD9648 采用符合 RoHS 标准的 64 引脚 LFCSP 封装,该封装与 AD9650 / AD9269 / AD9268 16 位 ADC、AD9258 14 位 ADC、AD9628 / AD9231 12 位 ADC 和 AD9608 / AD9204 10 位 ADC 引脚兼容,从而实现了 10 位和 16 位转换器之间的简单迁移路径,采样率为 20 MSPS 至 125 MSPS。
■ 以用户为中心的设计:融合了会议口译员的最新要求(欧洲机构、联合国等) ■ “闭环 - 菊花链”连接拓扑 ■ 可容纳多达 64 个翻译通道(包括现场通道) ■ 音频质量:所有 64 个通道均支持 48 kHz 音频采样率、20 Hz 至 20 kHz 频率响应 ■ 对手机 RF 干扰具有出色的免疫力 ■ 符合人体工程学的设计,具有适合视障人士的功能 ■ 6.8 英寸 TFT LCD 显示屏,显示高质量内容 ■ 7 个用于中继语言的预选按钮(1/2/3/4/5/6/7),LCD 上有激活指示 ■ 可调节激活麦克风的增益和低切 ■ 支持符合 CTIA 标准的 3.5 mm 立体声耳机 ■ 听力保护 ■ 所有物理按钮均配有盲文 ■ 支持“PnP”(即插即用) ■ 移动消息集成:主译员可以通过蓝牙从手机向所有译员单元发送文本消息
描述................................................................................................................................1 特性................................................................................................................................1 应用................................................................................................................................1 框图................................................................................................................................1 目录................................................................................................................................2 引脚配置.............................................................................................................................3 订购信息.............................................................................................................................3 引脚说明.............................................................................................................................4 绝对最大额定值.............................................................................................................5 直流电气特性.............................................................................................................6 电气特性.............................................................................................................................6 术语.............................................................................................................................................7 主时钟时序.............................................................................................................................8 数字音频接口.........................................................................................................................8 电源时序............................................................................................................................9 上电复位(POR).............................................................................................................9 MPU 3 线接口时序......................................................................................................12 MPU 2 线接口时序......................................................................................................13 器件描述...................................................................................................................14 简介........................................................................................................................14 时钟方案................................................................................................................14 数字音频接口.............................................................................................................15 音频数据采样率....................................................................................................17 硬件控制模式.............................................................................................................18 软件控制接口.............................................................................................................20 寄存器映射........................................................................................................................................21 衰减控制................................................................................................................22 数字滤波器特性...................................................................................................25 DAC 滤波器响应...................................................................................................25 数字去加重特性...................................................................................................26 应用信息......................................................................................................................27 推荐的外部元件(PCM 音频).............................................................................27 推荐的外部元件值.............................................................................................27 针对 PCM 数据格式的推荐模拟低通滤波器(可选).....28 封装尺寸.............................................................................................................29 重要通知.............................................................................................................30 地址:.............................................................................................................................30
1摘要与世界以指数速率生成数字数据,DNA已成为一种有希望的档案介质。由于其耐用性,物理密度和高信息容量,它提供了更高效,更持久的数字存储解决方案。该领域的研究包括编码方案的开发,这些方案与现有的DNA合成和测序技术兼容。最近的研究表明,使用复合DNA字母来利用这些技术的固有信息冗余性。这种方法中的一个主要挑战涉及嘈杂的推理过程,这阻止了大型复合字母的使用。本文引入了一种基于DNA的数据存储的新方法,与标准基于DNA的存储系统相比,逻辑密度增加了6.5倍,其重建误差接近零。组合DNA编码使用一组可明显区分的DNA短裤来构建大型组合字母,其中每个字母代表一个短成员的子集。这些组合字母的性质可以最大程度地减少混合误差,同时也确保了系统的鲁棒性。正如本文所示,我们正式定义了各种组合编码方案并研究其理论属性,例如信息密度,重建概率和所需的合成以及测序多重性。然后,我们建议使用基于组合DNA的数据存储系统的端到端设计,包括编码方案,二维误差校正代码和重建算法。在使用计算机模拟中,我们演示了我们建议的方法,并评估不同的组合字母,用于在不同的误差方面编码10KB消息。模拟揭示了重要的见解,包括核苷酸替代误差对缩短器级插入和缺失的相对可管理性。测序覆盖范围被发现是影响系统性能的关键因素,并且使用二维REED - 固体(RS)误差校正已显着提高了重建率。我们的实验概念证明通过使用吉布森组装构建两个组合序列来验证我们的方法的可行性,从而模仿了一个4周期组合合成过程。我们确认了成功的重建,并确定了我们方法对不同错误类型的鲁棒性。子采样实验支持采样率的重要作用及其对整体性能的影响。我们的工作证明了组合短材料编码基于DNA的数据存储的潜力,同时提出了理论研究问题和技术挑战。这些包括组合DNA的误差校正代码的开发,最佳采样率的探索以及支持组合合成的DNA合成技术的发展。将组合原理与错误校正校正策略结合起来为有效的,错误的DNA的存储解决方案铺平了道路。
• 带有耐环境封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m)• 绝对精度:± 1 hPa(或 ±8 m)• IPx8 认证:暂时浸泡在 50m 深的水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量为 1.7 µA,温度测量为 1.5 µA @1Hz 采样率,待机:0.5 µA。 • 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。• 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断)• 封装尺寸:8 针 PG-VLGA-8-2,2.0 毫米 x 2.5 毫米 x 1.1 毫米。• 符合绿色产品(RoHS)标准