Abe, VY, & Benedetti, CE (2016). PthAs 在细菌生长和致病性的附加作用与柑橘溃疡病易感基因效应结合元件的核苷酸多态性有关。分子植物病理学,17 (8),1223---1236。http://dx.doi.org/10.1111/mpp.12359 Afroz, A., Chaudhry, Z., Rashid, U., Ali, GM, Nazir, F., Iqbal, J., & Khan, MR (2011). 表达 Xa21 基因的转基因番茄 ( Lycopersicon esculentum ) 品系对细菌性枯萎病的抗性增强。植物细胞、组织和器官培养,104 (2),227---237。 http://dx.doi.org/10.1007/s11240-010-9825-2 Almeida, RPP、de La Fuente, L.、Koebnik, R.、Lopes, JRS、Parnell, S. 和 Scherm, H. (2019)。应对新的全球威胁木霉 (Xylella fastidiosa)。植物病理学, 109(2), 172---174. http://dx.doi.org/10.1094/PHYTO-12-18-0488-FI Attílio, LB, Filho, F. de AA M, Harakava, R., Da Silva, TL, Miyata, LY, Stipp, LCL 和 Mendes, BMJ (2013)。遗传
摘要:可再生能源在产生单户住宅的电力和热量中起着重要作用,同时又与外部能源供应商无关。这主要是由于经济优势,即降低电力成本。本文旨在比较两个由光伏系统提供动力的单户住宅,还要比较一个热泵。两座建筑物在相同的气候条件下彼此靠近(波兰Swietokrzyskie省)。分析比较了两个不同模型的光伏系统的电力生产,两种建筑物的最大功率为280 W和340 W。此外,对夏季和秋季期间的每月安装操作进行了对电力生产的分析。提出了在秋季和冬季的热泵每月消耗的每月电力消耗。在最后一步中,介绍了两个设施的投资回报率的经济分析。事实证明,尽管投资成本差异,但两座建筑物的投资回收期均在6 - 7年之间。关键字:热泵,光伏系统,可再生能源生成
Last but not least, the project will bridge the gap between hardware and software models by investigating mapping strategies targeting the following design constraints: (a) co-design and co-optimization with the underlying routing mechanism, so that smart mappings can allow more lightweight multicast hardware, (b) co-optimizing the SNN partitioning step with the placement one for efficient mapping of large scale SNNs to highly-parallel神经形态硬件。
“对盖伊·巴卡雷准尉在打击非法淘金行动中的死亡深感悲痛。我将我感动的思念寄给他的伙伴、他的六个孩子以及他的外国步兵第三团的战友们。我对卡莫皮的泰科美洲印第安人也有特别的想法,他们的副官盖伊·巴卡雷尔 (Guy BARCAREL) 是习惯上的酋长。我向为这项研究而动员的力量以及那些与非法淘金作斗争的人们致敬。”武装部队部长 Sébastien Lecornu 说道。
可再生能源发电(屋顶太阳能)可让您安装发电系统、连接到 PG&E 电网并获得积分以抵消能源使用成本。在满足某些额外要求的情况下,还可以安装储能系统以增加系统的价值。当前的可再生能源发电计划(净能源计量 2)将于 2023 年 4 月 14 日结束。
气候弹性和农业创新的融合在保护环境不确定性背景的情况下在保护食品和燃料安全方面起着关键作用。随着气候变化的不断影响,全世界的农民正在努力应对前所未有的障碍,例如前所未有的天气模式,害虫爆发和越来越多的资源。在印度,农业拥有数百万个生计的印度,采用气候富裕的农业实践不仅是有利的,而且是当务之急。这些实践不仅提高了生产率,而且还符合全球限制温室气体排放和促进可持续农业的任务。通过将技术注入农业,我们可以建立自适应和高效的系统,以使农民面对不断变化的气候发展。
半导体行业对全球经济起着至关重要的作用。半导体行业为包括汽车行业,电子和通信行业,医疗保健行业,建筑和建筑行业,空间行业等各种行业提供了各种必要的技术,例如物联网,AI,现代制造技术等。但是,半导体供应链经历各种供应链相关的风险和挑战,因为其程序上的复杂性,全球供应链整合,政府政策和法规,竞争力,技术复杂性等。没有多少研究研究了半导体在Dustry中采用绿色供应链的风险,韧性和复杂性。在这种情况下,这项研究的目的是检查管理绿色供应链采用的风险,韧性和复杂性,以实现半导体行业的更高可持续性。利用脚趾框架(技术 - 组织 - 环境)和DCV(动态能力视图),我们开发了一种研究模型来实现此目的。随后,该模型通过结构方程建模进行了验证,涉及356名受访者与半导体行业有联系。这项研究强调,技术风险方面包括技术动荡和风险,兼容性和复杂性,组织动态能力以及韧性以及适当的政策和法规,可以帮助成功地采用半导体行业的绿色供应链管理。
膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路
12:07:48:18 [詹姆斯·巴特默]:嗯,你知道,这很有趣,因为他在回忆录中写到过这件事,他写了一本回忆录,我有一些副本,我会给你一份。但你可以想象一下,如果你在战争中,你没有回家,你没有见过你的母亲、你的妻子、你的姐妹,你没有和很多女人在一起,突然间你就受伤了。他说过,我的意思是,他谈到了口音、爱尔兰口音,以及他们
去噪扩散概率模型 (DDPM) 最近在图像合成中表现出色,并在各种图像处理任务中得到广泛研究。在这项工作中,我们提出了一种用于生成三维 (3D) 医学图像的 3D-DDPM。与以前的研究不同,据我们所知,这项工作首次尝试研究 DDPM 以实现 3D 医学图像合成。我们的研究检查了脑肿瘤高分辨率磁共振图像 (MRI) 的生成。通过在半公开数据集上的实验对所提出的方法进行了评估,定量和定性测试都显示出有希望的结果。我们的代码将在 https://github.com/DL-Circle/3D-DDPM 上公开提供。关键词:扩散模型、图像合成、磁共振成像 (MRI)。