对于工业并行机器人的加工过程,移动平台和链接产生的重力将导致工具头预期的加工轨迹的偏差。为了评估此偏差并绕过它,有必要执行机器人刚度模型。但是,在先前的刚度分析中很少考虑重力的影响。考虑到链接/关节合规性,移动平台/链路重力以及每个链接的质量中心位置,本文为工业并行机器人提供了一种有效的刚度建模方法。首先,与每个组件相对应的外部重力由重力和质量中心位置的影响下的静态模型确定。然后,通过运动学模型获得了每个组件的相应Jacobian矩阵。随后,通过悬臂梁理论和基于FEA的虚拟实验获得了每个组件的遵从性。依次确定整个平行机器人的刚度模型,并在几个位置计算平行机器人的笛卡尔刚度矩阵。此外,可以预测工具头在每个方向上的主要刚度分布。最后,通过比较计算出的刚度和在相同条件下测量的刚度的比较来证明具有重力的刚度模型的有效性。
物理科学项目 • 基础物理项目 • 材料科学、燃烧科学、流体物理、软物质/颗粒材料、量子物理、生物物理 • 了解物理系统和过程在不同重力水平下的行为 • 从机械上理解在没有重力或部分重力的情况下的物理现象,以开发数值和预测模型 • 使用微重力或行星际距离作为研究工具,研究物理学的基本定律
科学法则的一个例子是重力定律,这是艾萨克·牛顿爵士发现的。重力定律指出,由于重力的拉力,物体总是落在地球上。根据该法律,牛顿可以解释许多自然事件。他不仅可以解释为什么像苹果这样的物体总是落在地面上,而且还可以解释为什么月亮旋转着地球。艾萨克·牛顿(Isaac Newton)发现了运动定律以及重力定律。他的动作定律使他能够解释为什么对象像这样移动。
这篇评论文章深入研究了重力领域,介绍了人造重力的复杂情况及其对肌肉骨骼系统的影响,揭开了围绕这项技术应用的谜团。因此,本文探讨了人造重力对肌肉骨骼系统的影响,分析了其积极和消极影响。为了实现这一目标,我们分析了关于这个主题的几项研究,重点研究了短臂离心机实验的使用情况。人造重力最初是在 19 世纪作为应对微重力环境严重生理影响的对策而提出的,当科学家意识到短时间的太空飞行对人体生理的影响微乎其微时,人造重力并不是优先考虑的事情。然而,随着即将到来的月球和火星长期任务的新计划和雄心勃勃的计划,人们对人造重力的兴趣再次高涨。人类在太空飞行 50 多年的经验表明,需要采取像人工重力这样的有效对策。提出的对策之一是阻力训练,虽然有益,但不能完全完成保持肌肉质量的任务,这会导致宇航员耗费大量时间。国际空间站中当前进行的锻炼的局限性,凸显了人工重力作为更完整的综合解决方案的潜力。尽管实施人工重力带来了后勤和财务挑战,但其潜在的好处使其成为未来太空任务非常值得投资的技术。模拟微重力效应的卧床研究(例如在 AGBRESA 中进行的研究)为了解生理对人工重力的反应提供了宝贵的见解。然而,人们担心使用它可能会产生负面影响,因为人工重力和失重交替可能会损害人体生理。因此,在本文中,我们分析了对进行卧床休息研究的受试者的研究,特别是研究对肌肉骨骼系统的影响;最后,我们回顾了不同的潜在副作用并对我们的研究结果得出结论。总之,本综述强调了人工重力作为对抗失重对肌肉骨骼系统的破坏性影响的对策的重要作用。未来的太空探索需要更好地处理失重影响减轻的技术,如人工重力。因此,应该对它的研究投入更多。
表1:对于最多三个阶段中的任何一个中的任何一个,x方向通量和源术语控制流动动力学。y方向上的术语以类似的方式提出。u x和u y = x和y方向的深度平均速度; UU VM和UV VM =虚拟质量贡献(Pudasaini and Mergili,2019年); dt =分散术语(Pudasaini,2023); g x = x方向重力的有效下坡分量; F D =变形系数(Pudasaini和Mergili,2024a); k x = x方向地球压力系数; G Z +和G Z- =重力的有效斜率正常成分,包括不同的浮力效应(Pudasaini和110 Mergili,2019年); G Z * =有效的重力斜率正常成分,包括浮力和曲率效应; C drag =阻力系数(Pudasaini and Mergili,2019年); δ=基底摩擦角; c =内聚力; E V =通过剪切系数通过剪切系数损失(Pudasaini和Mergili,2024b); φ=内部摩擦角; f ml =碎片数(Pudasaini等,2024); ζ=湍流摩擦数; n =曼宁号码;和C AD =环境阻力系数。绿色表示输入参数,蓝色表示派生的参数。115
但是前庭系统如何知道垂直方向是什么?为此,它使用了耳石器官和半规管。耳石器官检测特定力。因此,它能够简单地找出特定力指向哪个方向。由此可以得出重力的方向。但是,不应考虑身体的简单加速度。这就是半规管的作用所在。如果特定力的方向发生变化,但您没有旋转,那么您一定是在加速。因此,根据 OTO 的特定力和 SCC 指示的旋转速度,主观垂直方向会得到更新。
Trinity College研究所(TCIN)的首席物理学家Christian Kerskens博士是研究文章的合着者,刚刚在《物理通讯杂志》上发表。他说:“我们改编了一个想法,用于实验以证明量子重力的存在,从而使用已知的量子系统,这些系统与未知系统相互作用。如果已知的系统纠缠,则未知系统也必须是量子系统。它规避了找到我们一无所知的测量设备的困难。
但是前庭系统如何知道垂直方向呢?为此,它使用了耳石器官和半规管。耳石器官检测特定力。因此,它能够简单地找出特定力指向哪个方向。由此它可以推导出重力的方向。但是,不应考虑身体的简单加速度。这就是半规管的作用所在。如果特定力的方向发生变化,但您没有旋转,那么您一定是在加速。因此,根据耳石器官的特定力和 SCC 指示的旋转速度,主观垂直方向会得到更新。
但是前庭系统如何知道垂直方向呢?为此,它使用了耳石器官和半规管。耳石器官检测特定力。因此,它能够简单地找出特定力指向哪个方向。由此它可以推导出重力的方向。但是,不应考虑身体的简单加速度。这就是半规管的作用所在。如果特定力的方向发生变化,但您没有旋转,那么您一定是在加速。因此,根据耳石器官的特定力和 SCC 指示的旋转速度,主观垂直方向会得到更新。