设计:我们比较了 I 型 TKI(克唑替尼、恩曲替尼、他雷替尼、劳拉替尼和雷帕替尼)与 II 型 TKI(卡博替尼和美瑞替尼)以及 I 型 FLT3 抑制剂吉利替尼在 CD74-ROS1 野生型和 F2004C、L2026M、G2032R 或 L2086 突变型 Ba/F3 细胞中的活性。使用 NIH3T3 菌落形成试验和体内肿瘤生长证实了 Ba/F3 细胞模型的发现。使用 CRISPR/Cas9 基因编辑生成同源野生型和表达患者来源的 L2086F 突变型 TPM3-ROS1 细胞系。这些细胞系用于进一步使用细胞活力和免疫印迹方法评估 TKI 活性。分子建模研究使我们能够表征野生型和突变型 ROS1 激酶域中 TKI 敏感性的结构决定因素。我们还报告了使用卡博替尼治疗的 ROS1 TKI 耐药临床病例。
叶片形态是水稻育种中最重要的农艺性状之一,因为它对作物产量有贡献。脱落的叶子(DR)突变体是由甲基磺酸乙酯(EMS)诱变从iLpum水稻品种开发的。与野生型相比,DR植物表现出下垂的叶子,伴随着一个小的Midrib,短圆锥体和植物高度降低。DR植物的表型是由编码GDSL酯酶的单个回收基因中的突变(LOC_OS02G15230)引起的。对野生型和DR序列的分析表明,DR等位基因将单个核苷酸取代(甘氨酸)携带为天冬氨酸。RNAi与DR突变产生了相同的表型,确认LOC_OS02G15230与DR基因相同。Sio 2的显微镜观测和植物营养分析表明,DR叶片中的二氧化硅比野生型叶片不那么丰富。这项研究表明,DR基因与二氧化硅沉积的调节有关,二氧化硅过程的破坏导致叶片表型下垂。
爬行动物物种,尤其是蛇和蜥蜴,是动物色素的新兴模型。在这里,我关注基于野生型和Piebald Ball Python的研究中TFEC转录因子在蛇和蜥蜴着色中的作用。基因组映射先前鉴定出与Piebald Ball Python表型相关的TFEC突变。通过棕色Anole蜥蜴的基因编辑实验进一步支持TFEC与肤色的关联。然而,此处介绍的新型组织学分析揭示了球Python和Anole TFEC突变体表型之间的差异,该表型要警告广泛概括。的确,野生型和Piebald Ball Python都完全缺乏虹彩,而与野生型Anole相比,TFEC Anole蜥蜴突变体失去了虹彩。基于这些发现,我讨论了MIT/TFE家族在跨脊椎动物谱系的皮肤色素沉着中的潜在作用,并主张需要进行发育分析以及其他基因编辑实验,以探索爬行动物的色素多样性。
摘要:严重急性呼吸综合症冠状病毒2(SARS-COV-2)引起的冠状病毒疾病2019年(COVID-19)是全球健康紧急情况。主要蛋白酶(M Pro)对于冠状病毒的生命周期至关重要。boceprevir是SARS-COV-2 M Pro的潜在抑制剂和药物候选者。在这项研究中,研究了M PRO的蛋白质结构的变化,这是由于SARS-COV-2突变以及这些变化对Boceprevir亲和力的影响(重要的潜在治疗剂)。用RDP4和Megax分析了突变。通过Promod3产生了突变M Pro的三维模型。定性模型能量分析,下原和或而者是用于野生型和突变体M蛋白的结构验证和建模。使用I-Tasser TM得分计算野生型和突变体M Pro的拓扑差异。使用Autodock 4.2进行分子对接。使用Dynomics创建了功能动态结构模型。在SARS-COV-2的M Pro中检测到了七个突变(L89F,K90R,P108,A191V,T224A,A234V和S254F)。突变导致潜在的蛋白酶抑制剂Boceprevir的亲和力降低。Boceprevir停靠到M Pro的活性位点,对于野生型和突变体而言,结合能分别为-10.34和-9.41 kcal.mol -1。通过弹性网络模型分析计算的Debye – Waller因子分别为0.58和0.64Å2,野生型M Pro和Mutant M Pro分别为0.58。是SARS-COV-2的重要药物靶标的结构中的突变可能会使现有的治疗疗法无效。
比较了在含有 D-葡萄糖 (12.5 mM) 和 D-木糖 (12.5 mM) 的发酵培养基中生长的野生型和适应性进化的 BL21(DE3) 菌株的 xylA 和 xylF 基因 (分别编码木糖异构酶和木糖 ABC 转运蛋白) 的表达水平。与 BL21(DE3) 相比,JH001 菌株中 xylA 和 xylF 基因的表达分别上调了 11 倍和 3 倍。同样,在 JH019 菌株中,xylA 和 xylF 基因的表达水平与野生型菌株相比分别增加了 5 倍和 2 倍 (图 4A)。当每种菌株在仅含有 D-木糖 (25 mM) 的发酵培养基中生长时,JH001 和 JH019 细胞的 xylA 和 xylF 基因转录水平显著升高,至少比野生型 BL21(DE3) 菌株高出 5 倍(图 4B)。这些结果表明,D-木糖运输和代谢酶在携带 xylR 适应性突变的适应性 BL21(DE3) 细胞中高度表达。
图 1. 在表达 GFP 标记的野生型或变体 AR 的 M12 同源 PC 细胞系中追踪 EB1 彗星。MT 尖端和 AR 用 GFP 标记并成像一分钟(采集率为每秒两张图像)。EB1 彗星通过计算跟踪(Yang 等人,2005 年)。颜色编码代表 EB1 速度,较冷的颜色对应较低的速度,较暖的颜色对应较快的速度。比例尺等于 5 µm。(A)表达野生型 AR 变体的 PC 细胞的 MT 生长轨迹。中位速度约为 15 µm,边缘处明显减速,没有 AR。(B)表达对紫杉醇治疗有抗性的 ARv7 变体的细胞的 MT 生长轨迹。中位速度约为 24 um/min。下图显示相应的 EB1 彗星速度直方图。 (C) 为 AR 野生型的生长速度直方图,(D) 为 ARv7 变体的生长速度直方图,单位为 µm/min。
图 1 甜瓜植物体内 RNP 介导的基因组编辑。(a) 微粒介导的 GFP 基因转移到甜瓜 SAM。(b) 甜瓜基因组编辑 iPB-RNP 方法概述。(c) 携带目标 CmGAD1 基因座突变的阳性 E 0 植物的 CAPS 分析。符号“–”和“+”分别表示不使用和使用 Cas9 RNP 的消化。黑色和白色三角形分别表示 Cas9 RNP 处理后的未消化和消化条带。(d) 阳性 E 0 植物的 CRISPR/Cas9 靶序列与野生型的 CRISPR/Cas9 靶序列的比对,插入和缺失用红色字母突出显示。(e) 对来自两个 E 0 植物(#2-13 和 #2-16)的 E 1 植物进行基因特异性 CAPS 分析,使用与 (c) 中相同的符号。(f) 具有 gRNA 设计的 CmACO1 基因示意图。 (g) 针对 CmACO1 的基因组编辑实验总结。(h) cmaco1 纯合突变系 (#3-2,E 2 代) 的基因特异性 CAPS 分析,使用与 (c) 一致的符号。(i) 野生型和 cmaco1 中 CmACO1 的氨基酸序列比较,CRISPR/Cas9 的靶位点用下划线表示,序列变化用红色字母表示。星号表示终止密码子。(j 和 k) 收获后野生型和 cmaco1 果实的外观 (j) 和纵切面 (k)。(l) 授粉 40 天后测量的野生型和 cmaco1 果实 (E 2 代中的个体植物 E2-1 和 E2-2) 的乙烯产生量。数据以平均值±SE (n=3) 表示。
图 2. Western Blot 膜图像(WT:野生型,KO-mecA:mecA 基因抑制菌株)如图 3 所示,与野生型 (WT) 相比,KO 菌株中 PBP2a 表达显著减少 70%,进一步验证了成功破坏了甲氧西林耐药性。这些发现不仅展示了 CRISPR 技术在实现有针对性的基因改造方面的效力,而且还强调了其在基因和表型水平上解决抗生素耐药性的转化潜力。调节关键耐药基因表达的能力有望推动针对多药耐药病原体的精准治疗。