1 量子计算概述 2 1.1 量子币. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ...
由于其最佳氧化还原电势,铜酶介导的反应促进了基本生物学过程(即细胞呼吸,铁氧化,抗氧化剂防御)[9]。然而,过度浓度的铜可能会引发细胞毒性细胞损伤,如神经退行性疾病和癌症所涉及的所含义[10]。放松管制的铜代谢是造成Menkes和Wilson疾病的原因[11]。在这方面,调节Cu(i)代谢误导的配体提供了抵制这些病理状态的有吸引力的机会[12]。锌离子是多种酶的天然辅助因子,例如(i)基质金属蛋白酶(MMP),是导致细胞 - 授予细胞基质基质蛋白质降解的蛋白质降解,通常由抗癌化合物靶向[13]; (ii)人类碳酸酐酶(HCA),促进二氧化碳可逆性水合碳酸氢盐[14],其抑制剂表现出多种医疗应用(即利尿剂,抗惊厥药,作为肿瘤的抗癌药/诊断工具,抗肥胖剂); (iii)细菌金属β-乳糖酶(MBL)酶,促进β-乳酰胺抗生素降解。它们的抑制剂对于抵消对常用β-乳酰胺抗生素的耐药性至关重要[15,16]。
标题:关联量子物质和量子信息 名字:Laurent 姓:Sanchez-Palencia 实验室:CPHT 电子邮件:lsp@cpht.polytechnique.fr 网页:https://www.cpht.polytechnique.fr/cpht/uquantmat/ 研究领域:量子科学与技术(初级)、凝聚态物理学 方法:量子场论、量子信息方法、量子蒙特卡罗、张量网络方法 博士课程主题:该小组对关联量子物质的动力学进行理论研究,涉及超冷原子、量子光学和量子模拟。我们的工作旨在表征物质的新量子相和量子相变,了解量子传输以及关联量子物质中的非平衡动力学。我们还对量子信息论在凝聚态中的应用感兴趣。为此,我们开发了分析和数值方法。博士课程研究员将参与正在进行的项目之一,该项目要么是奇异量子材料的表征和量子模拟,要么是将量子信息方法应用于关联量子模型。下图说明了具有长程相互作用的关联量子系统中的信息传播。有关更多信息,请查看我们的研究网页 https://www.cpht.polytechnique.fr/cpht/uquantmat/ !
近年来,越来越多的论文试图在讨论工具和量子信息理论的观点上对与重力相关的问题进行讨论,通常是在替代量子理论的背景下。在本文中,我们指出了此类治疗中的三个常见错误或不一致。首先,我们表明,信息通道介导的相互作用的概念通常不等于量子场理论对相互作用的处理。用来描述重力时,该概念可能导致与一般相对论的不一致。第二,我们指出,通常不能用经典的随机来源代替一个Quantumfien,也不能通过经典的噪声模拟量子闪烁的影响,因为在这样做的重要量子特征(例如相干性和纠缠等重要的量子)中。第三,我们解释了如何在特定条件下半古典和随机理论从其量子起源提出,并在某些感兴趣的制度中发挥作用。
6 量子算法 1 6.1 一些量子算法 1 6.2 周期性 7 6.2.1 寻找周期 8 6.2.2 从 FFT 到 QFT 10 6.3 因式分解 12 6.3.1 因式分解作为周期寻找 12 6.3.2 RSA 16 6.4 相位估计 18 6.5 隐藏子群问题 21 6.5.1 离散对数问题 23 6.5.2 Di?e-Hellman 密钥交换 23 6.5.3 寻找阿贝尔隐藏子群 24 6.6 量子搜索 28 6.6.1 广义搜索 31 6.7 Grover 算法是最优的 32 6.8 使用量子计算机模拟量子物理 35 6.8.1 模拟局部汉密尔顿量的时间演化 35 6.8.2 估计能量特征值和能量特征态的准备 39 6.9 轻度纠缠量子计算的经典模拟 42 6.10 局部哈密顿问题的 QMA 完备性 46 6.10.1 3-SAT 是 NP 完全的 47 6.10.2 受挫自旋玻璃 49 6.10.3 量子 k 局部哈密顿问题 50 6.10.4 构造和分析哈密顿量 51
10 量子香农理论 1 10.1 香农入门 1 10.1.1 香农熵和数据压缩 2 10.1.2 联合典型性、条件熵和互信息 4 10.1.3 分布式源编码 6 10.1.4 噪声信道编码定理 7 10.2 冯·诺依曼熵 12 10.2.1 H ( ρ ) 的数学性质 14 10.2.2 混合、测量和熵 15 10.2.3 强次可加性 16 10.2.4 互信息的单调性 18 10.2.5 熵和热力学 19 10.2.6 贝肯斯坦熵界限20 10.2.7 熵不确定关系 21 10.3 量子源编码 23 10.3.1 量子压缩:一个例子 24 10.3.2 总体而言的舒马赫压缩 27 10.4 纠缠浓缩和稀释 30 10.5 量化混合态纠缠 35 10.5.1 LOCC 下的渐近不可逆性 35 10.5.2 压缩纠缠 37 10.5.3 纠缠一夫一妻制 38 10.6 可访问信息 39 10.6.1 我们能从测量中了解到多少信息? 39 10.6.2 Holevo 边界 40 10.6.3 Holevo χ 的单调性 41 10.6.4 通过编码提高可区分性:一个例子 42 10.6.5 量子信道的经典容量 45 10.6.6 纠缠破坏信道 49 10.7 量子信道容量和解耦 50 10.7.1 相干信息和量子信道容量 50 10.7.2 解耦原理 52 10.7.3 可降解信道 55
相互作用的多体量子系统表现出丰富的物理现象和动力学特性,但众所周知,很难研究:它们在分析和指出的方面都在挑战,很难在古典计算机上模拟。小规模的量子信息处理器有望有效地模拟这些系统,但是表征其动力学是实验性的挑战,需要超越简单相关功能和多体层析成像方法的探针。在这里,我们演示了测量超定分的相关因子(OTOC),这是研究量子系统演化和量子疗法等过程的最有效的工具之一。我们用超级导管电路实施了3x3二维硬核玻色式晶格,通过执行洛夫米德(Loschmidt)回波研究其时间可逆性,并测量OTOC,使我们能够观察到量子信息的繁殖。我们实验的中心要求是能够连贯逆转时间演变的能力,我们通过数字模拟模拟方案实现了这一目标。在存在频率障碍的情况下,我们观察到可以通过更多的粒子来部分克服定位,这是在二维中多体定位的可能标志。
自量子计算初期以来,产生稳定量子位的最大挑战之一是量子系统的高损失率,导致量子状态的变质并破坏量子的损失。在这方面,对于技术应用而言,需要长时间的退积时间和低损失的系统,并且可以更好地了解量子力学。获得低损耗系统的一种方法是将量子乘数(例如超导电路)与诸如声子等散装固体的机械自由度息息。在这篇简短的评论中,我试图解释了已经完成了这种耦合的一些不同方法,并对有关该主题的论文进行了简短的评论。i然后尝试使用机械自由度(即使用表面声波(SAW)的量子控制)来指定一种量子控制方法。
作为第一步,我们将开发一项超快实验,该实验基于适当数量的相位相干超短光脉冲的组合,以选择性地激发固体。我们将特别努力通过非共线光学参量放大器合成短至 10 飞秒的光脉冲(与米兰理工大学的 Giulio Cerullo 教授合作)。同时,我们将开发合适的理论模型来处理超快时间尺度和相互作用环境中的量子动力学。 作为第二步,我们将研究各种关联材料中的电子退相干动力学,例如 LaVO 3 和 V 2 O 3 ,它们是关联驱动的莫特绝缘体的典型例子。通过结合实验和理论结果,我们将探讨通过调整系统的温度、应变、激发协议和化学性质来增强退相干时间的可能性。我们还将研究相干操控 V 2 O 3 中的光诱导绝缘体到金属转变的可能性,以及可能相干控制其他系统中的相变(例如氧化铜中的超导性)。
因式分解、搜索和模拟等任务的量子算法依赖于控制流,例如分支和迭代,这些控制流取决于叠加数据的值。控制流的高级编程抽象,例如开关、循环、高阶函数和延续,在经典语言中无处不在。相比之下,许多量子语言不提供叠加控制流的高级抽象,而是需要使用硬件级逻辑门来实现这种控制流。造成这种差距的原因是,虽然经典计算机使用可以依赖于数据的程序计数器来支持控制流抽象,但量子计算机的典型架构并不类似地提供可以依赖于叠加数据的程序计数器。因此,可以在量子计算机上正确实现的完整控制流抽象集尚未建立。在这项工作中,我们对可以在量子计算机上正确实现的控制流抽象的属性进行了完整的描述。首先,我们证明,即使在程序计数器处于叠加态的量子计算机上,也无法通过将经典条件跳转指令提升到叠加态来正确实现量子算法中的控制流。该定理否定了将控制流的一般抽象(例如 𝜆 演算)直接从经典编程提升到量子编程的能力。作为回应,我们提出了在量子计算机上正确实现控制流的必要和充分条件。我们引入了量子控制机,这是一种指令集架构,其条件跳转被限制为满足这些条件。我们展示了这种设计如何使开发人员能够使用程序计数器代替逻辑门来正确表达量子算法中的控制流。
