AUROBINDO 在美国和中国扩张 总部位于印度的全球制药公司 Aurobindo (NSE: AUROPHARMA) 供应着美国最大份额的仿制药处方。Aurobindo 正在美国和中国扩建其生产设施,以扩大其在中国现有的印度生产和供应商。 • 根据 Aurobindo 的“2022-2023 年综合年度报告”,全球医疗数据和分析提供商 IQVIA 于 2023 年 3 月发布的季度报告将 Aurobindo 列为美国按处方量计算最大的仿制药供应商。1 Aurobindo 还跻身八个欧洲国家的十大仿制药公司之列。在 2023 财年,Aurobindo 生产了约 410 亿单位各种药品,并向美国市场推出了 34 种新产品。 • Aurobindo 成立于 1986 年,总部位于印度海得拉巴。该公司通过遍布全球的 87 家直属子公司和 9 家间接子公司雇佣了超过 23,000 名全职员工和约 10,000 名承包商。Aurobindo 的全球研发 (R&D) 部门拥有超过 1,500 名科学家和分析师。Reddy Penaka 家族的几名成员控制着 Aurobindo。2 • Aurobindo 正在调试七个新的复杂仿制药生产设施,其中三个在美国,一个在中国。Aurobindo 在印度拥有 19 家子公司和两家合资企业,主要位于安得拉邦和特伦甘纳邦。Aurobindo 在印度控制着 22 个制造单位,这些单位已获得美国食品药品监督管理局 (US FDA)、英国药品和保健品监管局 (MHRA)、欧盟的欧洲药品管理局 (EMA)、日本的药品和医疗器械管理局 (PMDA) 和联合国的世界卫生组织 (WHO) 等监管机构的批准。 3
资料来源:AQR、XPressFeed、S&P、MSCI Barra。我们从 1975 年到 2019 年每年 1 月 1 日开始运行 45 个单独的策略模拟,所有模拟都于 2019 年 12 月 31 日结束。对于直接指数化,我们每月都会将税收成本和交易成本降至最低,但前提是保持在与标准普尔 500 指数的预先指定的跟踪误差(使用 MSCI Barra 风险模型计算)范围内。对于 130/30 和 150/50,在每月重新平衡中,我们最大化价值动量因子模型的敞口,并将税收成本和交易成本降至最低,但前提是保持在与标准普尔 500 指数的预先指定的跟踪误差(使用 MSCI Barra 风险模型计算)范围内。交易成本根据 VIX、股票风险和相对于股票交易量的交易量计算。对于税收成本,我们模拟了两种替代税率假设:2020 年税率制度和拟议的拜登税收计划制度。在 2020 年税率制度下,短期资本收益的税率假设为 40.8%,长期资本收益和股息收入的税率假设为 23.8%。我们假设,根据拜登税收计划,所有收益和股息均按 43.4% 的统一税率征税。在报告税收优惠时,我们会分别针对只能抵消长期资本收益的投资者和可以同时抵消长期资本收益和短期资本收益的投资者计算税收优惠。此外,我们通过计算有效税率或未来税负的预期现值来核算未实现资本收益。我们对 2020 年税率制度和拜登税收计划制度分别采用 10% 和 25% 的有效税率。最后,所有税收优惠均相对于基准计算,基准被建模为直接持有被动 ETF,该 ETF 分配股息收入但不产生任何资本收益,并且所有其他建模选择(资本流动、慈善捐款和税率)均一致应用。
该通知的主题是:3-岩藻糖基乳糖(3-FL)可用作以下物质的成分:用于足月婴儿的牛奶、大豆和部分水解蛋白质基非豁免婴儿配方奶粉,每升配方奶粉含量不得超过 0.9 g(食用量);用于1至3岁幼儿的配方奶粉,每升配方奶粉含量不得超过 1.2 g(食用量);其他供3岁以下婴幼儿使用的饮料和食品,包括酸奶和果汁饮料,每千克含量不得超过 0.44 g,热麦片、饼干、椒盐脆饼、曲奇和零食,每千克含量不得超过 4.4 g;麦片、格兰诺拉麦片、能量棒、蛋白质棒和代餐棒;强化水和“强化”水;运动饮料、等渗饮料和“能量”饮料;早餐麦片;发酵乳、调味乳和混合乳;冰沙、酸奶、代餐饮料(牛奶和非牛奶基)和牛奶替代品;果汁和果蜜;水果味饮料和蔬菜汁;以及软糖 1 中最高含量为 0.26 至 8.8 g/kg;口服和肠内管饲配方食品(11 岁及以上)中最高含量为 6.6 g/L(按食用量计算)。2 该通知告知我们 Chr. Hansen 的观点,即通过科学程序,3-FL 的这些用途是 GRAS。Chr. Hansen 将 3-FL 描述为白色至象牙色的粉末,含有 ≥90% 的 3-FL 和少量的乳糖、葡萄糖、半乳糖和岩藻糖。 3- FL 的化学名称为 6-脱氧-α- L -半乳己吡喃糖基-(1 → 3)-[β- D -半乳己吡喃糖基-(1 → 4)]- D -葡萄糖己吡喃糖 (CAS 登记号 41312-47-4)。3-FL 是由 L -岩藻糖、D -半乳糖和 D -葡萄糖单元组成的三糖。Chr. Hansen 表示 3-FL 在结构上与人乳中的 3-FL 相同。
专用集成电路 (ASIC) 信号处理器对于实现现代应用的高性能和低功耗要求必不可少,但较长的开发时间是导致其采用率下降的一个障碍。其开发时间的很大一部分用于架构的设计和验证,其余部分则用于后端 ASIC 流程工作和芯片测试。敏捷硬件原则借鉴了类似的成功软件方法,以前应用于通用处理器,为继续开发片上信号处理系统 (SoC) 提供了一种有前途的解决方案。本文提出了一个数字信号处理 SoC 设计框架,该框架与敏捷设计原则相结合,支持快速原型设计和设计用于信号处理应用的 ASIC。首先,第 2 章探讨和分析了应用程序和现有的 ASIC 解决方案,以收集有用的属性和趋势。据此,第 3 章提出了一个通用信号处理 SoC 的模型。接下来,第 4 章介绍了一种新的 Chisel 生成器设计框架。Chisel 是一种用 Scala 编写的 DSL 硬件构造语言,允许在设计硬件时使用高级和函数式编程。该框架将通用处理器与信号处理加速器结合在一起,并提供了许多用于连接、内存映射和编程的库代码。当与敏捷设计流程相结合时,该框架支持 ASIC 的快速开发。加速器执行流信号处理以减轻 CPU 的高吞吐量计算内核负担。随着所需应用程序的处理单元的产生,处理从 CPU 转移到加速器。低速率处理任务在 CPU 上计算,这意味着流片按时进行并产生能够执行整个应用程序的工作芯片。第 5 章和第 6 章在两个独立的芯片上验证了该方法和提出的敏捷设计流程,涵盖两个应用程序和两个流程节点。 ASIC 谱仪 (Splash2) 的 RTL 由一个人在八周内设计完成,展示了 Chisel 快速构建处理元素生成器的强大功能。然后根据物理设计和时间线约束改进这些生成器并调整参数
目的:肺的计算机断层扫描(CT)的视觉评估通常用于诊断肺气肿。定量CT(QCT)可以补充视觉CT,但必须得到充分验证。QCT肺气肿定义为低衰减区域≤-950 Hounsfield单位(LAA-950)占据的肺体积≥5%。不一致的视觉和QCT评估并不少见。我们检查了大量受试者中的视觉和定量胸部CT评估之间的关联,以识别可能解释不一致的视觉和QCT发现的变量。材料和方法:对在爱荷华大学进行的COPDGENE研究1阶段入学的1221名受试者进行的1221名受试者的体积CT扫描进行了审查。参与者包括从不吸烟者,具有正常肺活量测量的吸烟者,肺活量测量值障碍和全球阻塞性肺病(金)阶段I – IV的倡议。ct扫描是由科德吉尼成像中心和爱荷华大学放射科医生定量评分和视觉解释的。个人级视觉评估与QCT测量值进行了比较。使用KAPPA统计量计算两组放射科医生之间的一致性。我们使用回归方法评估了与不一致结果相关的变量。结果:我们中心放射科医生和QCT之间存在肺气肿(61%的一致性,kappa,0.22 [0.17-0.28])是公平的一致性。当前的吸烟和女性性别与QCT阴性但视觉上可检测到的肺气肿显着相关。临床试验注册:临床Trials.gov标识符NCT000608764。类似的比较ISON显示了COPDGENE成像中心与QCT之间的略有一致性(56%的一致性,Kappa 0.16 [0.11-0.21]),两组视觉评估之间的中等一致(80%一致性,Kappa 0.60 [0.60 [0.54-0.65])。结论:肺气肿的视觉和定量CT评估之间的一面一致的一致性强调,需要利用这两种方式进行全面的放射学评估。不一致的结果可能归因于一个或多个在较大研究中需要进一步探索的因素。关键词:胸部成像,慢性阻塞性肺部疾病,观察者一致,Akaike信息标准
1 燃料电池系统不包括氢储存、电力电子、电池和电力驱动。2 使用寿命目标旨在覆盖车辆的整个使用寿命。燃料电池系统使用寿命定义为考虑实际驾驶条件(即非稳定状态运行)的适当工作循环的使用小时数。相应的车辆使用寿命范围为 100 万英里(临时)和 120 万英里(最终),基于平均速度 40 英里/小时。3 临时和最终成本目标假设每年生产量为 100,000 台(括号内引用的除外)。请注意,要达到燃料电池和氢储存组件的成本目标,可能需要利用汽车生产量来实现必要的规模经济,从而实现成本竞争力。据估计,当前(2019 年)重型汽车燃料电池技术的成本为 ~190 美元/千瓦,以每年 1,000 台的生产量计算(燃料电池系统分析,2019 年 DOE 氢能和燃料电池计划评审报告,https://www.hydrogen.energy.gov/pdfs/review19/fc163_james_2019_o.pdf)。4 成本以 2016 年美元计算。5 储能系统循环寿命目标旨在表示长途运输车辆整个使用寿命所需的最少运行循环次数。这个目标与技术无关。6 加压储能系统必须满足适用规范和标准(即 SAE J2579 和联合国全球技术法规第 13 号)中的循环寿命要求。这些规范和标准循环寿命要求所需的循环次数明显多于储能系统循环寿命。例如,联合国全球技术法规中基准初始压力循环寿命对于重型应用可能要求 11,000 次循环。 7 氢存储系统成本包括储罐和所有必要的设备平衡组件。该目标与技术无关。8 目前(2019 年)700 巴氢存储系统的成本估计为每年 1,000 台制造量约为 36 美元/千瓦时,大批量制造时为 15 美元/千瓦时(根据美国能源部氢能和燃料电池计划记录 #15013“车载 IV 型压缩氢存储系统 - 成本和性能状况 2015 年”推断,https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage performance cost.pdf)。注意:氢存储目标将更新,目前基于 USDRIVE FCEV 目标。9 分析基于 2050 年简单的拥有成本假设,并反映了市场渗透的预期时间表。
摘要 本研究采用关联定量方法,通过分发基于 Google Form 的问卷调查来确定人工智能技术和数字素养的使用对 11 年级 Office 专业学生学习兴趣的部分和同时的影响。 SMKN 1 棉兰。本研究的对象为 127 名学生,共抽取 30 名学生作为样本,采用简单随机抽样和目的抽样相结合的方式选出。数据分析技术采用多元线性回归分析技术和描述性分析进行计算。推论分析结果显示,AI使用量变量计算t值=0.3460.05),意味着AI使用量没有部分影响关于学习兴趣。识字变量的 t-count 值为 4.892,t-table 值为 2.048(t-count > t-table)。则重要性水平 t 为 (0.000 < 0.05)。假设表明,数字素养变量对学习兴趣有显著影响。F 检验结果显示,计算得到的 F 值 = 27.876,F 表 = 3.37(计算得到的 F > F 表)。关键词:人工智能技术的使用、数字素养、学习兴趣、SMKN 1 Medan 摘要 本研究采用关联定量方法和调查方法,通过分发基于 Google 表单的问卷来确定人工智能技术和数字素养的使用对学习者的影响。识字。在棉兰 SMKN 1 办公室 11 年级的学习兴趣中,部分和同时进行识字。本研究的对象为 127 名学生,共抽取 30 名学生作为样本,采用简单随机抽样和目的抽样相结合的方式选出。数据分析技术是使用多元线性回归分析技术和描述性分析通过计算进行的。推论分析结果显示,使用人工智能的变量的值为 t = 0.346 < t 表 = 2.048,则 t 的显著性水平为(0.732 > 0.05),即使用人工智能对变量没有部分影响人工智能对学习兴趣的影响。识字变量的 tcount 为 4,892,ttable 为 2,048(t count > t table)。则 t 的显著性水平为 (0.000 < 0.05)。假设表明,数字素养变量对学习兴趣有显著的部分影响。F 检验结果显示,F count = 27.876,F table = 3.37(F count > F table )。关键词:人工智能技术的使用、数字素养、学习兴趣、SMKN 1 Medan PENDAHULUAN
摘要。在正常碳酸血症和中度及重度低碳酸血症期间测量脑血流量 (CBF) 和脑氧代谢率 (CMR0 2)。18 只 1 至 7 天大的新生杂种狗接受泮库溴铵治疗,并用 70% NzO 和 30% O 2 进行通气。调节呼吸器以使 PaC0 2 达到 15 托,随后通过调节吸入的 CO 2 浓度将 PaC0 2 调整至 25 和 40 托。PaC0 2 水平的顺序是随机的。用微球技术测量 CBF,CMR0 2 计算为动脉矢状窦 O 2 含量差乘以半球血流量。所有测量均在每个 PaC0 2 下 30 分钟后进行。• PaC0 2 为 25 托时总 CBF 降低(p < 0.001),与 25 托 CO 2 相比,PaC0 2 进一步降低至 15 托导致总 CBF 显著降低 (p < 0.01)。PaC0 2 为 25 托时所有区域脑血流量均降低(p < 0.001),PaC0 2 为 15 托时大多数区域 CBF 的流量进一步显著降低。在 PaCO z 为 40 托时,CMR0 2 为 1.28 ± 0.47 ml/ 100 g/min,在 PaCO 2 值为 25 和 15 托时,分别降至 1.09 ± 0.34 (p < 0.05) 和 1.04 ± 0.28 (p < 0.025) ml/l00 g/min。在 PaCO 2 为 40 托时,心输出量计算为 169 ± 71 ml/kg/min,在 PaCO 2 值为 25 和 15 托时,分别降至 135 ± 27 (p < 0.025) 和 127 ± 36 (p < 0.005) ml/kg/min。对于 PaCO z 在 10 至 50 托之间的值,PaCO 2 与 CBF 之间的关系的回归分析是非线性的(In CBF = a + b·PaCO 2 )。区域 CBF 的一系列回归曲线显示 R 值在 0.69 和 0.81 之间(p < 0.001)。结论是,当 PaCO 2 值为 25 和 15 托时,低碳酸血症会导致总脑血流量和区域脑血流量显著减少。与正常碳酸血症相比,当 PaCO 2 值为 25 和 15 托时,CMR0 2 和心输出量也显著减少。在 10 至 50 托之间,区域 CBF 与 PaCO 2 之间存在非线性关系。(Pediatr Res 20:1102-1106,1986)
请根据下面的标题简要说明您的介入临床研究:1。研究设计描述了研究设计,包括试验是否将受到安慰剂的控制,随机化的方法,分配隐藏,掩盖,分析类型(根据方案进行治疗的意图)。2。研究人群描述了纳入和排除标准。描述有关如何选择研究人群的任何相关细节,例如磨合后。3。建议的干预措施包括对实验和对照/比较器干预措施的描述。请注意干预措施的剂量和持续时间。如果您正在尝试进行复杂的干预措施,请参阅MRC指南,以制定和评估复杂的干预措施。4。结果度量描述了主要和次要结果措施。说明结果将如何可靠地测量以及在什么时间点进行。说明结果措施是否以及如何裁定。5。随访提供了频率和随访持续时间的详细信息,以及避免损失跟进的方法。提供有关合规性的任何预期问题的详细信息,并解释如何处理这些问题。6。研究设置描述了将确定并邀请参与者参加的临床环境(例如,一般实践,医院门诊患者,救护车服务用户)。7。年龄,性别/性别,种族)。8。15-20%的相对风险降低)。包括服务不足的人的人描述了受研究状况或需要医疗干预措施影响的人口的人口统计学(例如解释您的目标是招募一组代表受病情影响或需要医疗干预措施影响的人群的参与者,以及您的招聘和保留方法将如何与服务不足的群体互动(请参阅NIHR确定和包括服务不足的组)。功率计算和样本量计算提供了建议的样本量,描述了事件速率(应基于当代数据)并解释了如何估计。给出事件速率,估计效果大小,功率和类型1错误率的详细理由。如果存在已知的不良影响导致不遵守,则在计算样本量时需要考虑这一点。进一步的指导:当估计效果大小时,请记住,对于二进制临床结果,大多数治疗最多都具有中等影响(例如效果估计更大,需要仔细的理由。(注意:已知对小型试验进行系统评价的结果高估了效应大小,因此此类研究通常不适合在新试验中确定治疗的可能效果大小。)如果样本量要求超过英国的能力,BHF鼓励申请人考虑寻求国际合作。
orcid ID:https://orcid.org/0000-0002-3745-8133出版物:[1] Ross N.L.和Meagher E.P.(1984)在模拟压缩下H 6 Si 2 O 7的分子轨道研究。美国矿物学家69:1145-1149。[2] Ross N.L。和McMillan P.(1984)MGSIO 3 Ilmenite的拉曼光谱。美国矿物学家69:719-721。[3] Akaogi M.,Ross N.L.,McMillan P.和Navrotsky A.(1984)Mg 2 SIO 4多晶型物(橄榄石,改性尖晶石和尖晶石) - 氧化物熔体溶液量热法,相位关系和晶格振动模型的热力学特性。美国矿物学家69:499-512。[4] Ross N.L., Akaogi M., Navrotsky A., Susaki J., and McMillan P. (1986) Phase transitions among the CaGeO 3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation.地球物理研究杂志91:4685-4696。[5] McKelvey M.J.,O'Bannon G.W.,Larson E.M.,Marzke R.F.,Eckert J.和Ross N.L.(1986)新离子插入化合物(NH 4 +)的合成,表征和性能0.22 Tis 2 0.22-。材料研究公告21:1323-1333。[6] McMillan P.F.和Ross N.L.(1987)Al 2 O 3圆锥和MGSIO 3 Ilmenite的热容量计算。矿物质的物理和化学14:225-234。[7] Ross N.L. 和Navrotsky A. (1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。 矿物质的物理和化学14:473-481。 美国矿物学家72:984-994。[7] Ross N.L.和Navrotsky A.(1987)Mg 2 GEO 4橄榄石 - 尖晶石相变。矿物质的物理和化学14:473-481。美国矿物学家72:984-994。[8] Geisinger K.L.,Ross N.L.,McMillan P.和Navrotsky A.(1987)K 2 Si 4 O 9:玻璃,薄板和韦迪特型相的能量和振动光谱。[9] Hazen R.M.,Finger L.W.,Angel R.J.,PreWitt C.T.,Ross N.L.,Mao H.K.,Hadidiacos C.G.,Hor P.H.,Meng R.L.和Chu C.W.(1987)y-ba-cu-o超导体中相的晶体学描述。物理评论B35:7238-7241。[10] Hazen R.M.,PreWitt C.T.,Angel R.J.,Ross N.L.,Finger L.W.,Hadidiacos C.G.,Veblen D.R.,Heaney P.J.,Horp.j.,Hor P.H.,Meng R.L.,Sun Y.Y.,Wang Y.Q.