摘要:当前基于硅的电子技术正在接近其物理和科学极限。碳基器件对下一代电子产品具有众多优势(例如,速度快、功耗低和工艺简单),当这些优势与碳元素多功能同素异形体的独特性质相结合时,正在引发一场电子革命。碳电子器件正通过新的制备方法和复杂的设计取得长足进步。从这个角度来看,本文回顾了不同尺寸的代表,例如碳纳米管、石墨烯、块体金刚石及其非凡的性能。本文还强调了相关的最先进器件和复合混合全碳结构,以揭示它们在电子领域的潜力。商业化生产的进步提高了成本效率、材料质量和器件设计,加速了碳材料的应用前景。
Faraon 于 2004 年获得加州理工学院物理学学士学位。随后,他前往斯坦福大学攻读应用物理学博士学位和电气工程硕士学位,并于 2009 年获得这两个学位。他的博士研究重点是开发用于经典和量子信息处理的耦合量子点集成光子晶体器件。获得博士学位后,他成为加利福尼亚州帕洛阿尔托惠普 (HP) 实验室智能基础设施实验室的博士后研究员。在惠普,他开发了基于金刚石中氮空位的光子量子技术,并在硅中构建了光学互连器件。Faraon 因在半导体电子材料技术方面的进步而于 2008 年获得 Ross Tucker 奖。他发表了 25 多篇期刊文章,并合著了三本书的章节。
摘要:光量子技术有望彻底改变当今的信息处理和传感器。许多量子应用的关键是纯单光子的有效来源。对于用于此类应用的量子发射器,或对于相互耦合的不同量子系统,量子发射器的光发射波长需要进行定制。在这里,我们使用密度泛函理论来计算和操纵二维材料六方氮化硼中荧光缺陷的跃迁能量。我们的计算采用 HSE06 函数,它使我们能够准确预测 267 种不同缺陷的电子能带结构。此外,使用应变调谐,我们可以定制合适量子发射器的光跃迁能量,以精确匹配量子技术应用。因此,我们不仅提供了为特定应用制造发射器的指南,而且还提供了一条有希望的途径来定制可以耦合到其他固态量子比特系统(例如金刚石中的色心)的量子发射器。
标题:基于超材料的单光子发射器 摘要:能够按需工作(即触发时发射)的单光子发射器对于量子信息处理的实际实施至关重要。对于高效的单光子发射器,需要优化包括量子效率和收集效率在内的整体效率。研究了量子点或纳米粒子等 2 级系统的固态等效物以及纳米金刚石、SiC 等材料中的色心作为嵌入不同宿主的偶极子发射器。为了获得更高的量子效率,必须操纵宿主介质中的光子局部态密度以实现最大 Purcell 因子。进一步的设计需要将光子有效地耦合到远场,通常是空气或光纤。在本次演讲中,我将介绍光子晶体微腔中的偶极子发射器以及超材料,以提高它们在特定方向上的整体发射效率。
长距离量子通信和网络需要具有高效光学接口和长存储时间的量子存储节点。我们报告了基于金刚石纳米光子腔中的硅空位中心 (SiV) 实现的集成双量子比特网络节点。我们的量子比特寄存器由充当通信量子比特的 SiV 电子自旋和充当存储量子比特的强耦合硅-29 核自旋组成,量子存储时间超过 2 秒。通过使用高度应变的 SiV,我们实现了温度高达 1.5 开尔文的电子-光子纠缠门和温度高达 4.3 开尔文的核-光子纠缠门。我们还通过使用电子自旋作为标志量子比特展示了核自旋-光子门中的高效错误检测,使该平台成为可扩展量子中继器的有希望的候选者。T
1. 结合我们从之前两个原型中获得的知识,构建一个可展开的自调准 TIR 空间望远镜作为 12U 有效载荷(UCAM/S4)2. 包括视角和大面积覆盖,以从无人机数据创建高度逼真的模拟 TIR 空间数据(UCAM/S4)3. 继续我们的利益相关者参与计划(UCAM/S4)4. 开发工具来稳健地评估地球上任何建筑物的能量输出(UCAM)5. 设计一个系统原型以实现 TIR 条带测绘(S4)6. 在现有数据分发平台上开发测试模块,使 TIR 红外图像能够轻松地与可见光图像叠加(Open Cosmos Ltd)7. 专门为获得专利的自调准望远镜开发金刚石车削自由曲面光学器件(Durham Precision Optics - 新合作伙伴)。
NTT 300 GHz 频段 InP HBT 功率放大器和 InP-CMOS 混合相控阵发射器 Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米柔性 SiGe BiCMOS 技术 Takuya Maeda 东京大学 ScAlN/GaN 电子设备应用特性 Trevor Thornton 亚利桑那州立大学 高功率器件的金刚石-BN 异质结:终极 HEMT ? Jim Sowers Maxar Space Infrastructure 商业通信卫星有效载荷中的 III-V 族半导体 Kenle Chen 中佛罗里达大学 用于下一代无线通信的负载调制平衡放大器 Bernhard Grote NXP 基站 GaN HEMT 和 GaN PA 技术进展 Lan Wei 滑铁卢大学 基于物理的单片 GaN 集成模型系列 Larry Dunleavy Modelithics Inc.,南佛罗里达大学
我们预测了一系列不寻常的量子声学现象,这些现象是由完全可调固态平台中的声音-物质相互作用引起的,在该平台中,金刚石中的一系列固态自旋与一维光机械晶体中的量化声波耦合。我们发现,通过使用在光机械相互作用中引入位置相关相的空间变化激光驱动器,可以原位调整机械能带结构,从而导致非常规的量子声音-物质相互作用。我们表明,当自旋与能带共振时,可以发生准手性声音-物质相互作用,可调范围从双向到准单向。当固态自旋频率位于声学带隙内时,我们证明了一种奇异的极化子束缚态的出现,它可以介导长距离可调、奇邻域和复杂的自旋-自旋相互作用。这项工作扩展了目前对量子声子的探索,可以在量子模拟和量子信息处理中得到广泛的应用。
2017 年 10 月 两台中子发生器的绝对中子发射测量 David J. Thomas 和 Neil J. Roberts 核计量组 化学、医学和环境科学部(CMES) 摘要:为了校准欧洲联合环面 JET 内的裂变室中子监测器和活化系统,采购了两台紧凑型氘氚中子发生器。在部署到 JET 之前,它们被带到 NPL 以测定中子发射。使用精密长计数器进行测量以确定绝对尺度上发射的角度依赖性,并使用活化箔将总发射率推导出 4 立体角。两台发生器总发射率的长计数器值和活化结果平均值之间的一致性在指定的 3% 到 4% 的不确定度范围内。这是基于连接到中子发生器的金刚石监测探测器的每监测计数的排放率,也是总排放率,尽管后者的数量随时间而变化。