摘要:目前可用的能够达到原子分辨率的分子成像技术仅限于低温、真空条件或大量样品。基于金刚石中氮空位 (NV) 中心自旋相关光致发光的量子传感器具有在环境条件下实现具有原子分辨率的单分子检测的巨大潜力。金刚石纳米粒子也可以通过植入 NV 中心来制备,从而实现能够进入活体生物系统的独特纳米传感器。因此,该技术可能提供前所未有的途径和洞察力,了解生理条件下单个生物分子的结构和功能,并能够以原子分辨率观察量子级的生物过程。本综述对金刚石量子传感器的理论以及从制备到传感技术的最新发展进行了批判性讨论。
本论文进行了文献综述,以评估有关纳米金刚石 (ND) 及其应用的当前知识状态,包括它们在刺激响应材料中的应用。进行理论审查后发现,虽然 ND 因其出色的性能而受到重视,但对其在可持续和智能材料中的应用研究仍然有限。这表明可能存在知识差距,科学界对该主题的研究可能还不够,以至于在理论测试条件之外的现实应用中广为人知或使用。这表明该主题在当前时间和地点值得研究。案例研究展示了 ND 在水净化、有机太阳能电池和自修复材料等应用中的变革潜力。这些案例研究强调了纳米金刚石增强耐用性、效率和环保性的能力。Carbodeon Ltd Oy 的采访见解提供了关于知识差距、未来前景和 ND 商业化的实用观点。研究结果强调需要进一步研究和合作,以充分发挥 ND 作为材料科学创新和可持续解决方案基石的潜力。
1.1 动机 在工业环境中,磨损会造成经济损失,从而产生直接和/或间接成本。例如,成本密集型的新收购、必要的大修、生产停工和维护成本等都是重要的因素。仅德国,每年的经济损失就估计约占 GDP 的 2 – 7%。 除了经济方面,生态因素在制造公司中也发挥着重要作用。例如,全球约 23% 的能源消耗来自摩擦接触。引进先进的摩擦学技术可以在短期内减少全球二氧化碳排放量高达 14.6 亿吨二氧化碳当量 [KHOL]。 ANTACON 公司是创新和开发新型清洁摩擦学技术的先驱,从而为更可持续的经济做出了贡献。
摘要 本文介绍了对 CVD 钻石进行的研究,以确定带电粒子的痕迹(CVD 是化学气相沉积的缩写)。辐射硬度是探测器的先决条件,探测器应在 CERN 大型强子对撞机的 ATLAS 和 CMS 实验的相互作用区域附近工作。基于金刚石的探测器可能是该领域像素探测器和条形探测器的抗辐射选择。这项工作包含四个主要成果。首先,将某厂商钻石样品的探测器质量从30μm电荷采集距离提高到200μm。其次,首次运行基于金刚石的微带探测器:金刚石带探测器在信号分布峰值处实现了 50:1 的信噪比,最可能的电荷信号为 5000 e 。轨迹预测的误差在 12 μm 和 16 μm 之间,对于低于 1000 e 的信号阈值,探测器效率通常接近 100%。第三个结果是 CVD 钻石的不均匀性扩大了信号分布。这并不奇怪,因为 CVD 钻石是多晶的。第四个要点是 CVD 钻石的辐照,这是首次使用质子、中子和介子进行辐照,其剂量部分高于大型强子对撞机的预期剂量。这里检查的钻石样品具有抗辐射性,具体取决于颗粒类型和剂量。我作为 CERN ATLAS/SCT 小组的成员在探测器研究项目 RD42 中开展了这项工作。
由于这些引脚作为量子比特[1]使用,因此仅利用光子吸收这一自然现象便可实现光子-电子纠缠测量(③)[2]。 3. 结果与讨论 我们将六个碱基对应的偏振光转移到庞加莱球上并进行断层扫描,得到了所有偏振保真度超过 80% 的结果(图 2)。这种保真度远远超过了经典极限(66%),并证明我们的转移是具有量子特性的量子态转移。传输保真度恶化的原因被认为是氮核自旋的初始化速度不完善。通过改善这一点,有望提高传输保真度。 4. 结论与展望我们成功地实现了光子的偏振态到氮核自旋的量子转移。未来,我们的目标不仅在于提高转录保真度,还在于将量子态转录到钻石中也存在的碳同位素的核自旋中。 5.参考文献 [1] Y. Sekiguchi, H.Kosaka 等,Nature Commun. 7, 11668 (2016)。 [2] H. Kosaka 和 N. Niikura,Phys. Rev. Lett.
几十年来,人们一直在积极研究在极端压力下由碳基聚合物、化合物或其他碳同质异形体(即石墨)形成钻石的过程。1–12 钻石可以通过极端加热和压缩某些塑料、1 甲烷、2,3 和爆炸物形成。10,12 例如,在直线加速器相干光源 (LCLS) 实验中使用原位 X 射线衍射在 139 至 159 GPa 的双冲击聚苯乙烯 (CH) 中检测到立方钻石,这表明碳和氢键的断裂以及碳重组为钻石仅在纳秒时间尺度上即可发生。1 这里给出的结果表明,立方钻石也在 Stycast 1266 环氧树脂(C:H:Cl:N:O.27:38:1:1:5) (参考文献 13) 中形成,该混合物受到 80 和 148 GPa 的双重冲击。这些结果表明,冰巨行星内部的化学和热力学条件适合钻石的形成,其内冰层主要由 CH 4 、 NH 3 和 H 2 O 组成。
下一代高亮度 X 射线光子源需要新的 X 射线光学器件。我们在此展示了在尖端高重复率 X 射线自由电子激光 (XFEL) 设备中使用单片金刚石通道切割晶体作为高热负荷光束复用窄带机械稳定 X 射线单色仪的可能性,该单色仪具有高功率 X 射线光束。这些研究中制造和表征的金刚石通道切割晶体设计为双反射布拉格反射单色仪,分别将 15 meV 带宽内的 14.4 或 12.4 keV X 射线引导至 57 Fe 或 45 Sc 核共振散射实验。晶体设计允许带外 X 射线以最小的损失传输到其他同时进行的实验中。入射的 100 W X 射线束中只有不到 2% 被 50 m 厚的第一块金刚石晶体反射器吸收,从而确保单色器晶体高度稳定。预计金刚石槽切割晶体将用于其他 X 射线光学应用。
摘要:金刚石中的色心在量子技术中被广泛探索为量子比特。然而,在设备异质结构中有效和高效地集成这些金刚石承载的量子比特方面仍然存在挑战。在这里,通过“智能切割”和同位素(12C)纯化过度生长合成了纳米级厚度的均匀金刚石膜。这些膜具有可调的厚度(显示为 50 至 250 纳米),是确定性可转移的,具有双边原子平坦表面(R q ≤ 0.3 纳米)和块状金刚石结晶度。色心是通过注入和原位过度生长掺入来合成的。在 110 纳米厚的膜内,单个锗空位(GeV − )中心在 5.4 K 下表现出稳定的光致发光,平均光学跃迁线宽低至 125 MHz。单个氮空位 (NV − ) 中心的室温自旋相干性显示 Ramsey 自旋失相时间 ( T 2 * ) 和 Hahn 回波时间 ( T 2 ) 分别长达 150 和 400 μ s。该平台可将承载相干色心的金刚石膜直接集成到量子技术中。关键词:金刚石、色心、量子信息科学、异质结构、量子传感