1 意大利国家研究委员会光子学和纳米技术研究所 (IFN-CNR) 和米兰理工大学物理系,意大利米兰 20133 列奥纳多达芬奇广场 32 号 2 加拿大阿尔伯塔省卡尔加里大学量子科学与技术研究所,加拿大阿尔伯塔省卡尔加里 T2N 1N4 3 卡迪夫大学物理与天文学院,英国卡迪夫 CF24 3AA 4 卡迪夫大学工程学院,英国卡迪夫 CF24 3AA 5 马德里康普顿斯大学材料物理系,西班牙马德里大学城 28040 6 东京大学工程学院机械工程系,日本东京 113-8656 7 都灵大学物理系和“纳米结构界面和表面”跨系中心,I-10125意大利都灵 8 国家研究委员会光子学与纳米技术研究所(CNR-IFN)、伊苏布里亚大学科学与高科技系,Via Valleggio 11,22100 科莫,意大利 9 CNR 光子学与纳米技术研究所,L-NESS,Via Anzani 42,22100 科莫,意大利 10 意大利理工学院,可持续未来技术中心,via Livorno 60,10144 都灵,意大利 11 都灵大学,分子生物学中心,via Nizza 52,10126 都灵,意大利 12 乌尔姆大学量子光学研究所,D-89081 乌尔姆,德国 13 乌尔姆大学综合量子科学与技术中心(IQst),D-89081 乌尔姆,德国
摘要:金刚石中的色心在量子技术中被广泛探索为量子比特。然而,在设备异质结构中有效和高效地集成这些金刚石承载的量子比特方面仍然存在挑战。在这里,通过“智能切割”和同位素(12C)纯化过度生长合成了纳米级厚度的均匀金刚石膜。这些膜具有可调的厚度(显示为 50 至 250 纳米),是确定性可转移的,具有双边原子平坦表面(R q ≤ 0.3 纳米)和块状金刚石结晶度。色心是通过注入和原位过度生长掺入来合成的。在 110 纳米厚的膜内,单个锗空位(GeV − )中心在 5.4 K 下表现出稳定的光致发光,平均光学跃迁线宽低至 125 MHz。单个氮空位 (NV − ) 中心的室温自旋相干性显示 Ramsey 自旋失相时间 ( T 2 * ) 和 Hahn 回波时间 ( T 2 ) 分别长达 150 和 400 μ s。该平台可将承载相干色心的金刚石膜直接集成到量子技术中。关键词:金刚石、色心、量子信息科学、异质结构、量子传感
标准 3 mm x 3 mm x 0.25 mm 单晶光学级金刚石基底(Element Six,≤ 1 ppm [N])用于膜合成。首先将它们精抛光至表面 Rq ≤ 0.3 nm(Syntek LLC.),以尽量减少形态不一致(见图 S1 (a))。接下来,用 150 keV 的 4 He + 离子(CuttingEdge Ions LLC.)注入样品,以在 ≈ 410 nm 深度处形成石墨化层。这是在 7 ° 的入射角下完成的,以避免离子沟道。剂量设置为 5 × 10 16 cm − 2,略高于石墨化阈值,以尽量减少晶体损伤(见第 1.5 节)。在本研究中,注入后采用了三步退火工艺:400 °C 浸泡 8 小时,然后在 800 °C 浸泡 8 小时,最后在 1200 °C 退火 2 小时。1 该过程在合成气体环境中完成(Ar:H 2 为 96:4)。注入和退火对表面粗糙度没有负面影响(见图 S1 (b))。通过室温拉曼光谱研究了膜形成过程中碳键的相变(见第 2.2 节)。
业界越来越倾向于采用三维 (3D) 微电子封装,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(与 IC 表面正交)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层间时解析通孔磁场非常有利。两个导电层之间的高度差由磁场图像确定,并且与 PCB 设计规范一致。在我们最初使用 QDM 为复杂 3D 电路中的电流源提供更多 z 深度信息的步骤中,我们证明了由于麦克斯韦方程的线性特性,可以从整个结构的磁场图像中减去各个层的磁场图像。这允许从设备中的各个层中分离信号,该信号可用于通过求解 2D 磁逆来映射嵌入式电流路径。这种方法提出了一种迭代分析协议,利用神经网络对包含各种类别的电流源、隔离距离和噪声的图像进行训练,并结合 IC 的先验信息,
下一代高亮度 X 射线光子源需要新的 X 射线光学器件。我们在此展示了在尖端高重复率 X 射线自由电子激光 (XFEL) 设备中使用单片金刚石通道切割晶体作为高热负荷光束复用窄带机械稳定 X 射线单色仪的可能性,该单色仪具有高功率 X 射线光束。这些研究中制造和表征的金刚石通道切割晶体设计为双反射布拉格反射单色仪,分别将 15 meV 带宽内的 14.4 或 12.4 keV X 射线引导至 57 Fe 或 45 Sc 核共振散射实验。晶体设计允许带外 X 射线以最小的损失传输到其他同时进行的实验中。入射的 100 W X 射线束中只有不到 2% 被 50 m 厚的第一块金刚石晶体反射器吸收,从而确保单色器晶体高度稳定。预计金刚石槽切割晶体将用于其他 X 射线光学应用。
摘要 业界采用三维 (3D) 微电子封装的趋势日益增长,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(正交于 IC 表面)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层之间时解析通孔产生的磁场非常有利。两个导电层之间的高度差由磁场图像确定,并与 PCB 设计规范相符。在我们为以下提供进一步 z 深度信息的初始步骤中
基于碳材料的光学传感器 - QU antum BE lgium 开发用于太空应用的量子金刚石磁力仪
该项目旨在对以过渡金属二硫属化物 (TMD) 和金刚石材料为代表的二维和三维异质结构进行全面的实验研究。其主要重点是两种不同配置的 TMD/金刚石异质结构的制造和表征,即金刚石上的 TMD 和 TMD 上的金刚石。将通过各种传统和先进的分析技术来表征形态、化学和光电特性以及物理过程。结果将用于从根本上理解所制备的 TMD/金刚石异质结构的生长机制、相互作用和特性。同时,将制造选定的 TMD/TMD 异质结构,以将其生长机制和特性与 TMD/金刚石异质结构进行比较。此外,还将研究通过内部(掺杂、诱导应力、局部缺陷)和外部(电场和磁场、压力和光激发)调制定制的 TMD/金刚石异质结构特性。预计在 TMD/金刚石界面和本体处,可以控制诸如金属与半导体的转变现象、带隙排列、费米能级偏移或发光等效应。