可变形图像注册对于临床诊断,治疗计划和手术导航至关重要。但是,大多数现有的注册解决方案都需要在可变形注册之前单独的刚性对准,并且可能无法满足较大的变形情况。我们提出了一个新型的边缘感知金字塔变形网络(称为EPREG),用于无监督的体积登记。特别是,我们建议从多级特征金字塔中充分利用有用的互补信息,以预测多尺度的位移场。这样的粗到细节估计促进了预测的注册场的进行性重新确定,这使我们的网络能够处理体积数据之间的大变形。此外,我们将边缘信息与原始图像作为双输入集成在一起,从而增强了图像内容的纹理结构,以促使所提出的网络额外注意以进行结构对齐的边缘感知信息。在包括MindBoggle101,LPBA40和IXI30在内的三个公共大脑MRI数据集上对我们的EPREG的效率进行了广泛的评估。实验证明,相对于骰子指数(DSC),Hausdorff距离(HD)和平均对称的表面距离(ASSD)的指标,我们的EPREG始终优于几种尖端方法。提出的EPREG是解决可变形体积登记问题的一般解决方案。
脑肿瘤严重影响生活质量,并改变患者及其亲人的一切。脑肿瘤的诊断通常从磁共振成像 (MRI) 开始。从 MRO 图像手动诊断脑肿瘤通常需要专家放射科医生。然而,这个过程既耗时又昂贵。因此,需要一种计算机化技术来检测 MRI 图像中的脑肿瘤。使用 MRI,使用三维 (3D) 克罗内克卷积特征金字塔 (KCFP) 的新机制来分割脑肿瘤,解决像素丢失和多尺度病变处理薄弱的问题。用 3D 克罗内克卷积代替单一扩张率,同时使用 3D 特征选择 (3DFSC) 进行局部特征学习。在 3DFSC 末尾添加 3D KCFP 以解决多尺度病变处理薄弱的问题,从而有效分割不同大小的脑肿瘤。使用具有全局阈值的 3D 连通分量分析作为后处理技术。标准多模态脑肿瘤分割 2020 数据集用于模型验证。与其他基准方案相比,我们的 3D KCFP 模型表现优异,整个肿瘤、增强肿瘤和肿瘤核心的骰子相似系数分别为 0.90、0.80 和 0.84。总体而言,所提出的模型在脑肿瘤分割方面是有效的,这可能有助于医生对未来的治疗计划做出适当的诊断。
脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常
因此,该措施旨在通过扩大其监管权力来减少从事“金字塔计划”或“链分配计划”的商业公司越来越多的商业公司的能力。该提出的措施为“金字塔计划”或“连锁分销计划”提供了明确的定义,即禁止的销售设备和“多层营销”或“网络”或“网络”作为合法的业务方式。它进一步列举了“金字塔计划”或“链分配计划”的指标和/或条件,以使公众总体上会对这些公司保持警惕。为了减少使用金字塔销售设备的使用,该法案规定了更硬的处罚。
对早期学习的社会和情感基础(CSEFEL)金字塔模型的此产品(6.5小时培训)旨在支持儿童在3岁之前出生的社会和情感发展。金字塔模型是促进幼儿的社交和情感能力以及防止和解决挑战行为的循证实践框架。金字塔模型包括大量资源,以帮助纽约的育儿计划和提供者实施该模型。这个婴儿幼儿模块是为专业发展提供者和教师/家庭访客/护理人员设计的,他们与婴儿和幼儿一起工作(出生 - 三岁)。金字塔模型:婴儿 - 托德勒模块2:响应式例程,环境和有针对性的策略
图 1.1:2001 年、2011 年和 2022 年各省人口估计数 图 1.2:2013 年至 2022 年南非和北开普省家庭数量(千户) 图 1.3:2022 年北开普省人口金字塔 图 1.4:2022 年纳马夸区市镇人口金字塔 图 1.5:2022 年皮克斯利卡塞梅区市镇人口金字塔 图 1.6:2022 年 ZF Mgcawu 区市镇人口金字塔 图 1.7:2022 年弗朗西斯巴德区市镇人口金字塔 图 1.8:2022 年约翰陶洛盖特塞韦区市镇人口金字塔 图 1.9:2022 年各省平均总生育率2001-2006 年、2006-2011 年、2011-2016 年、2016-2021 年和 2021-2026 年 图 1.10:2011 年和 2022 年省际移民情况 图 1.11:2013-2022 年北开普省和南非人口密度 图 1.12:2001-2006 年、2006-2011 年、2011-2016 年、2016-2021 年和 2021-2026 年北开普省平均预期寿命
摘要:近年来,基于深度学习的方法已被应用于合成孔径雷达(SAR)图像的目标检测。然而,由于SAR的成像机制和低信杂噪比(SCNR),利用SAR图像进行飞机检测仍然是一项具有挑战性的任务。针对这一问题,提出了一种基于相干散射增强和融合注意机制的低SCNR SAR图像飞机检测新方法。考虑到人造目标与自然背景之间的散射特性差异,引入相干散射增强技术来增强飞机散射信息并抑制杂波和斑点噪声。这有利于深度神经网络后续提取有关飞机的准确和有判别力的语义信息的能力。此外,开发了一种改进的Faster R-CNN,该网络具有一种融合局部和上下文注意的新型金字塔网络。局部注意通过增强重要对象的可区分特征来自适应地突出显示重要对象,而上下文注意则有助于网络提取图像的不同上下文信息。融合局部注意力和上下文注意力可以保证飞机被尽可能完整地检测到。在TerraSAR-X SAR数据集上进行了广泛的实验以与基准进行比较。实验结果表明,所提出的飞机检测方法在低SCNR下可以达到高达91.7%的平均精度,显示出有效性和优于许多基准。
我们使用多少能量?麦当劳书中最令人惊叹的见解之一就是世界现在实际使用的能量是多少。数字令人震惊!全球,我们每天消耗约1亿桶石油。是40亿加仑(十亿加仑!)“……足以让尼亚加拉瀑布奔跑两个小时。”现在这是很多石油。但实际上有多少能量?麦当劳解释说:“想想埃及的大金字塔,这是地球上最大的纪念碑。基于构成金字塔的所有石头的质量以及在施工过程中抬高这些石头的高度,纯粹的能量术语,已经计算出大约2.4万亿焦耳的焦点来建造这些结构。” (公制的焦耳是用于提起1公斤向上1米的能量。)“被翻译成石油,可以用约400桶建造金字塔……不到世界石油生产的一秒钟。因此,如果我们从各种来源(化石燃料,水力,地热,风,太阳能,核,核,核,核,核,核,核,它)每年都有超过200万个金字塔的工作!古埃及人花了二十年的时间建造一次。”如此大量的能量需要用清洁的来源代替:哇,这是一项艰巨的任务!,但正如麦当劳坚持认为,现在完全有可能。