和SR +2以已知诱导超导性超导性的浓度,ND 2 CUO 4和LA 2 CUO 4。Electron doped (La 0.185 Pr 0.185 Nd 0.185 Sm 0.185 Eu 0.185 Ce 0.075 ) 2 CuO 4 and hole doped (La 0.18 Pr 0.18 Nd 0.18 Sm 0.18 Eu 0.18 Sr 0.1 ) 2 CuO 4 are synthesized and shown to be single crystal, epitaxially strained, and highly uniform.传输测量表明,所有生长的薄膜都在绝缘,而不是掺杂。退火研究表明,可以通过修饰氧气化计量和诱导金属性但没有超导性来调整电阻率。这些结果反过来又连接到扩展的X射线吸收良好的结构结果,表明高熵库层中缺乏超导性可能起源于Cu – O平面内的大变形(σ2>0.015Å2),这是由于A-部位阳离子阳离子尺寸变化引起的,这驱动了载货者本地化的本地化。These findings describe new opportunities for controlling charge- and orbital-mediated functional responses in Ruddlesden – Popper crystal structures, driven by balancing of cation size and charge variances that may be exploited for functionally important behaviors such as superconductivity, antiferromagnetism, and metal-insulator transitions while opening less understood phase spaces hosting doped Mott insulators, strange metals, quantum临界,伪胶囊和有序的电荷密度波。
绝大多数星形星系都被星际介质弹出的大量气体包围。紫外线的吸收和发射线代表强大的诊断,以通过氢和金属离子的谐振过渡来限制这些流量的凉爽相。对这些观察结果的解释通常很困难,因为它需要对气体中连续性和发射线传播的详细建模。为了实现这一目标,我们提供了一个大约20000个模拟光谱的大型公共网格,其中包括与Mg II,C II,C II,SI II和Fe II相关的H ilyα和五个金属过渡,可在线访问。光谱已经使用Rascas Monte Carlo辐射传输代码计算出5760个理想化的球形对称配置,围绕中心点源发射,并以其柱密度,多普勒参数,尘埃不透明,风速,风速以及各种密度和速度渐变为特征。旨在预测和解释LYα和金属线专利线,我们的网格表现出广泛的谐振吸收和发射特征,以及荧光线。我们说明了如何通过对观察到的LYα,C II和SI II光谱进行关节建模来帮助更好地限制风质。使用多云的模拟和病毒缩放关系,我们还表明,即使培养基被高度离子化,也有望成为T≈104-10 5 K的气体的忠实示踪剂。发现C II探测与LYα相同的温度范围,而其他金属线仅痕迹冷却器相(T≈104 K)。由于它们的气体不透明度在很大程度上取决于气体温度,入射辐射场,金属性和粉尘耗尽,因此我们要警告光学上的金属线不一定源自低H I柱密度,并且可能不会准确探测Lyman Continuum Continuum Continuum泄漏。
小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],独立于其[fe / h],是SMC的低恒星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
小的麦哲伦云(SMC)是跨越较大年龄范围的富含球形簇(GC)系统的主机。SMC簇的化学组成仍然很少了解化学进化研究。在这里,我们提供了三个不同的群集中进化巨人的第一个详细的化学研究,NGC 121(10.5 Gyr),NGC 339(6 Gyr)和NGC 419(1.4 Gyr)。结果基于在非常大的望远镜处用火焰获得的高分辨率光谱。这些簇的化学物质与SMC场恒星的化学含量非常相似,支持SMC相对于银河系的特定化学富集史。在所有三个簇中观察到的近似太阳尺度的[α / fe],与它们的[Fe / H]无关,是SMC的低星形成效率。与银河系相比,主要由大型恒星产生的元素严重代表性不足。尤其是年轻的NGC 419群集的极低[Zn / fe]表明,在过去的2个GYR中,Hypernovae的贡献相对较少。无论年龄如何,这三个GC具有较高的[EU / FE]值。这表明SMC中的R-过程元素的产生非常有效,直至1.5 Gyr,其富集时间尺度与IA型超新星相当。将最古老的SMC对象NGC 121的属性与与Gaia-celladus合并事件相关的原位银河系簇和积聚的簇进行比较时,SMC已经达到了与Gaia-Ecceladus相同的金属性,但具有较低的[Fe / H]比率下[Fe / H]的比率。这表明早期SMC和Gaia-enceladus的化学富集历史存在,并且SMC的早期质量可能比Gaia-Ecceladus低。
上下文。恒星元素丰度通常用于通过假设行星对主要耐火元件的相对丰度(Fe,Mg和Si)的相对丰度与宿主恒星相似,从而限制了岩石系外行星的内部。最近,在低质量行星及其宿主星的组成中发现了非对一的相关性。因此,进一步探索较大岩石系外行星样本的相关性是引起极大的兴趣。目标。我们专注于大量的岩石系外行星,并计算其大量元素丰度比。我们通过比较这些难治性元件的丰度比分析了岩石系外行星及其宿主星之间的定量相关性。方法。岩石系外行星的内部被认为是带有硅酸盐地幔的富铁芯。,我们使用贝叶斯统计方法从其测得的质量和半径上限制了岩石系外行星的大量组成。然后,我们使用正交距离回归(ODR)来表征岩石系外行星及其宿主星之间的组成相关性。结果。一些岩石外球星人被证明具有高铁质量的馏分,因此可能具有富含铁的超核。我们发现岩石系外行星的铁含量取决于其宿主星的金属性[Fe/H]。围绕较高金属恒星形成的行星通常跨越更大的铁质量,从而允许更高的铁含量。结果表明,大多数岩石行星相对于初始的原球盘更富含铁。此外,我们直接将岩石系外行星的铁质量分数与从其宿主恒星的难治性元素丰度比推导的铁质级分。
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。
上下文。迄今为止,绝大多数系外行星的发现都发生在太阳能街区的恒星周围,化学成分与太阳相当。然而,模型表明,具有不同动力学历史和化学丰度的不同银河环境中的行星系统可能会显示出不同的特征,这可以帮助我们改善我们对行星形成过程的理解。目标。这项研究旨在评估即将到来的柏拉图任务的潜力,以研究各种银河环境中恒星周围的系外行星种群,特别关注银河系薄磁盘,较厚的磁盘和恒星光环。我们旨在量化柏拉图在每个环境中检测行星的能力,并确定这些观察结果如何限制行星形成模型。方法。从全天空的柏拉图输入目录开始,我们将240万个FGK恒星分类为它们的分解银河系。对于长期观察LOPS2和LOPN1柏拉图田中恒星的子样本,我们使用新一代行星种群合成数据集估算了行星的发生率。将这些估计值与柏拉图检测效率模型相结合,我们预测了在标称2+2年任务中每个银河环境的预期行星产量。结果。基于我们的分析,柏拉图很可能检测到富含α的厚磁盘周围的至少400个系外行星。柏拉图田有3400多个潜在的目标恒星,其中有[Fe/H] <−0.6,这将有助于提高我们对金属贫困恒星周围行星的理解。结论。这些行星中的大多数被预计是半径的超近美和亚元素,其半径在2至10 r r介于2至50天之间,这是研究半径谷与恒星化学之间的联系的理想选择。对于金属贫乏的光环,柏拉图可能会检测1至80个行星,其周期在10到50天之间,这取决于潜在的金属性阈值,即行星形成。我们确定了高优先级,高信号到空的柏拉图P1样品中47个(运动学分类)恒星的特定目标列表,在金属贫困环境中寻找行星时提供了主要机会。柏拉图的独特功能和大量的视野位置是在银河系中各种银河环境中研究行星形成的宝贵工具。通过探测具有不同化学成分的恒星周围的系外行星种群,柏拉图将为恒星化学与行星形成之间的联系提供有益的见解。
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
1。MariaGrazia Betti,Dario Marchiani,Andrea Tonelli,Marco Sbroscia,Elena Blundo,Marta de Luca,Antonio Polimeni,Riccardo Frisenda,Carlo Mariani,Samuel Jeong,Yoshikazu Ito,Nicola Cavani,Roberto Berik berne no no no hern serne Molinari,Valentina de Renzi,Deborah Prezzi,“介电响应和氢化石墨烯的激发”,碳趋势,100274,(2023),10.1016/j.cartre.2023.100274 2 O L. Morales和Carlos A. Duque,“斐波那契石墨烯超晶格的磁光特性”,Eur。物理。 J. B, 93, 47, (2020), 10.1140/epjb/e2020-100583-x 3. Michael Hernandez、Alejandro Cabo Montes de Oca、Maurice Oliva Leyva 和 Gerardo Naumis,“水如何使石墨烯具有金属性”,Physics Letters A, 383, 29 (2019), 10.1016/j.physleta.2019.125904 4. M. de Dios-Leyva、MA Hernández-Bertrán、AL Morales 和 CA Duque,“准周期石墨烯超晶格:朗道能级谱的自相似性”,Solid State Communications, 284–286, 93–95 (2018), 10.1016/j.ssc.2018.09.011 5. M. de Dios-Leyva、MA Hernández-Bertrán、AL Morales、CA Duque 和 Huynh Vinh Phuc,“周期性石墨烯超晶格中的光吸收:垂直施加磁场和温度效应”,Ann.物理。 (柏林)2018,1700414(2018),10.1002/andp.201700414 6. Melquiades de Dios-Leyva、Michael Alejandro Hernández-Bertrán、Álvaro Luis Morales、Carlos Alberto Duque,“石墨烯超晶格中的磁光吸收:狄拉克点效应”,Phys. Status Solidi RRL 2017, 1700347, (2017), 10.1002/pssr.201700347 7. CA Duque、MA Hernández-Bertrán、AL Morales 和 M. de Dios-Leyva,“探索石墨烯超晶格:磁光特性,”J. Appl.物理。 121, 074301 (2017), 10.1063/1.4976680 8. MA Hernández-Bertrán、CA Duque 和 M. de Dios-Leyva,“石墨烯超晶格:有限尺寸对态密度和电导的影响”,Phys. Status Solidi B, 254, 4 (2017), 10.1002/pssb.201600313 9. MA Hernández-Bertrán 和 L. Diago-Cisneros,“层状半导体异质结构中空穴的准键态:寿命和特征能量”,Rev. Cuba Fis。 32, 20 (2015)。