摘要 本文研究了石榴树叶从水溶液中去除 Ni(II)、Cu(II) 和 Pb(II) 离子。发现生物吸附依赖于 pH,所有提及的金属离子的最高吸收量都发生在 pH 为 4 时。此外,还评估了其他参数(例如初始金属离子浓度和生物吸附剂和吸附剂的接触时间)的影响。对于所有研究的金属,平衡数据非常符合 Langmuir 模型。还得出结论,Freundlich 等温线不足以适用于这三种金属的平衡数据。Ni(II)、Cu(II) 和 Pb(II) 的生物吸附分别在 60、60 和 30 分钟内达到平衡。此外,二阶模型可以最好地描述金属的吸附速率。关键词:生物吸附、石榴、Langmuir、Freundlich、动力学模型
3.评价化学除冰剂的试验方法 ................................................. 1 7 3.1 物理化学特性...................................... 1 8 3.1 .1 采样 ................................................ 18 3 .1.2 除冰器分析 ................................................ 1 9 3.1 .3 水溶性 ................................................. 20 3.1 .4 冰点 ................................................ 23 3. 分区>1 .5 共晶温度 ................................ 25 3.1 .6 共晶成分 ................................ 2 6 3.1.7 溶解热 ................................... 2 8 3.1 .8 除冰剂溶液的粘度......................................... 2 9 3. div>1 .9 除冰解决方案的 p H ................................................. 30 3 .2 除冰性能 ................................................ 31 3.2。1 融冰测试(SHRP H -20 5 .1 和 H-20 5 .2)................ 31 3.2 .2 冰渗透测试(SHRP H-20 5) .3 和 H-20 5.4 ) .... 33 3.2.3 冰切下测试 (SHRP H- 2 0 5 .5 和 H-20 5.6 ) ................. 3 5 3.2.4 冰块测试 ................................. 38 3.3 与裸金属和涂层金属的兼容性 39 3.3。1 裸金属腐蚀 (SHRP H- 2 0 5 .7 ) ................ 39 3.3。2 盐雾对涂层金属的腐蚀 .................................. 40 3.4 与混凝土中金属的相容性 .................................. ...... 4 2 3.4 .1 混凝土中除冰化学钢筋的腐蚀作用 (SHRP H - 205.12) ................ 43 3.5 与混凝土和非金属的相容性 .... ................................. 44 3.5.1 快速评价除冰剂对混凝土影响的方法(SHRP H - 205.8) .................................. 44 3.5.2 除冰剂对混凝土的结垢影响 (SHRP H - 205.9) .. ...................................................... 47 3.5.3 耐磨性 ...... ...................................... 48 3.5.4 混凝土机械强度保留 .................................. .. ... 49 3.5.5 除冰剂对非金属的影响....................................... 51
作者进行了HEA阵列形成机制。在存在或不存在液体金属纳米反应器的情况下进行了hea颗粒的合成(图1(b),(c))。基于由减少表面能驱动的液体金属的合并性能,构建了动态反应环境,因此将前体转化为合金。相比之下,前体由在每个预定义的孤立区域中产生多个纳米颗粒的纯金属盐组成。为了进一步详细说明液体金属的作用,作者还进行了理论计算,表明GA与底物的键合最弱,并且含GA的系统具有最高的扩散率。这些对实现融合的颗粒运动有益。探索高渗透合金阵列的潜在光学应用,作者在广泛的频谱中展示了全息成像。
Price,WB 铜及其一些重要工业合金在高温下的性能,340。讨论,367,586。Q Quick,GW 讨论,373。R Rhodes,FH 化学工业中高温使用金属的腐蚀和其他问题,100。
美国环境保护局(美国EPA)危险空气污染物(HAP)包括涉嫌或与癌症发展有关的有毒金属。用于检测和量化大气中有毒金属的传统技术不是实时的,可以阻碍来源的识别,或者受仪器成本限制。火花发射光谱是一种有前途且具有成本效益的技术,可用于实时分析有毒金属。在这里,我们开发了一种具有成本效益的火花发射光谱系统,以量化美国EPA靶向的有毒金属的浓度。具体来说,将CR,Cu,Ni和Pb溶液稀释并沉积在火花发射系统的接地电极上。最低绝对收缩和选择算子(LASSO)被优化并使用,以检测来自火花生成的等离子体排放的有用特征。优化的模型能够检测原子发射线以及其他功能,以构建回归模型,该模型可预测观察到的光谱中有毒金属的浓度。使用检测到的特征估算了检测的极限(LOD),并与传统的单特征方法进行了比较。lasso能够检测输入频谱中的高度敏感特征。但是,对于某些有毒的金属,单功能的LOD略优胜于套索。低成本仪器与高级机器学习技术用于数据分析的组合可以为数据驱动的解决方案铺平道路,以实现昂贵的测量。
我们的腐蚀控制程序可显着降低各种应用中使用的多种金属的腐蚀速率。这些腐蚀控制解决方案有效地消除了水性环境和系统污染物的腐蚀性副作用,通常会阻碍您的生产力,关闭操作或缩短资本密集型设备的寿命。
随着设备加工精度的发展和半导体材料掺杂的均匀性,由于设备的生产过程,由铜所代表的金属互连设备的瓶颈变得越来越明显。金属的性能在微尺度上显着恶化,而碳纳米管组件结构在此规模上具有很大的优势。除了具有高于铜的高电导率外,CNT还具有出色的导热率,可以支持良好的热管理和热量耗散。CNT的另一个重要方面与其焊料的独特特征和高频工作能力有关。纳米焊接技术涉及局部加热CNT bers以产生交联的bers。1,2基于这项技术,可以通过CNTber构建各种结构,包括2D网络和3D笼子,并且可以生产可编程的电路。此外,CNT可以在40 GHz或更高频率的高频率下使用高性能,这代表了由于其性质而无法克服的金属的局限性。此外,散热已成为限制
• 寿命:大多数氦氖激光器故障都是由于管内氦气逸出造成的。氦气是一种非常小的气体,很难被任何容器捕获。仅基于氦气扩散的氦氖激光器寿命受两个因素影响:管内氦气的压力和管材料的扩散系数。在所有氦氖激光器中,管内氦气的压力是相当的,这意味着这里更重要的因素是管壁本身的扩散系数。玻璃的扩散系数比金属高得多,这导致氦气通过玻璃的扩散率比通过金属的扩散率高出约十倍。玻璃的扩散系数也高度依赖于温度,这使得在高温下操作或储存对全玻璃管的影响比对主要为金属的管的影响要大得多。我们管的金属也充当管的阴极,这意味着集中在我们阴极上的电流密度比玻璃管中的典型阴极低得多。这种较低的电流密度减少了材料溅射到孔内引起的故障。