b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。 从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。 这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。 在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。 实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。 此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。如今,材料科学正在通过利用扰动技术来研究其动力反应,从而朝着对非平衡状态的材料的理解和控制。从这个角度来看,超时光脉冲的使用似乎是一种相关方法,因为它可以选择性地解决固态系统,更尤其是电子的不同程度的自由度。这种方法可以帮助解读电子相关性引起的物理现象,并补充一种更传统的方法,其中在热力学平衡下研究了材料的相图。在这里,我们结合了飞秒光谱光谱和高压设置,以监视v 2 O 3薄纤维在压力驱动的绝缘子到金属过渡的超平衡光响应。实验结果表明,在V 2 O 3薄片中使用相干声子作为热力学相标记的可能性。此外,超快相干声子模式(1 g字符)的频率行为似乎反映了晶格和电子自由度之间的强耦合在临界压力周围的频率下方的明显下降的晶格和电子自由度之间的强烈耦合。
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
二硫族化合物 MX 2 (过渡金属 M 和硫族元素 X) 是范德华耦合的层状准二维材料,具有可定制的电子特性,因此在器件、气体传感器和化学过程方面具有重要意义。[1] 其基础是多相和堆叠顺序的存在,以及作为主体材料进行掺杂和插层的能力。[2] 二硫族化合物辉钼矿 (MoS 2 ) 是一种热力学稳定的块体晶体,间接带隙为 1.2 至 1.3 eV。[3–5] 其晶体结构由堆叠的 S–Mo–S 片组成,具有 A–B–A 堆叠的三角棱柱对称性,其中顶部和底部 S 平面中的硫原子占据等效的垂直位置。[3] S–Mo–S 片之间的距离为 6.5 Å。 [6] 从间接带隙块体 2H-MoS 2 到单层,带隙逐渐加宽,单层 MoS 2 的直接带隙达到 1.9 eV。[5] 半导体 2H-MoS 2 相支持通过化学和物理方法诱导的 n 型和 p 型掺杂。[7–11] 据报道,插层、电子、光学和热激发以及机械应变和层取向。[3,12–16] 将 S-Mo-S 层中一个 S 平面的硫原子滑动 1.82 Å 会导致单层内的 ABC 堆积,其中硫原子占据 2H 相六边形的中心,从而产生金属 1T-MoS 2 相。 [3,17] 金属 1T-MoS 2 相可以通过电子注入来稳定,例如用电子显微镜直接注入电子或通过吸附的锂原子提供电子。[12,17–21]
mPCM 的热导率很高。5,6 这在需要高热输入和输出的应用中尤其明显。电池电动汽车 (BEV) 就是这样一种应用,快速充电和放电至关重要。基于 mPCM 的热能存储是满足 BEV 热管理要求的一种有前途的解决方案。7 利用 mPCM 的储热系统可以在不降低电动汽车行驶里程的情况下满足加热乘客舱的热能需求,而常见的电加热器解决方案就是这种情况。然而,缺点是 mPCM 的反应性很高,尤其是在液态时,与潜在的容器材料反应性很强。8-12 因此,需要用一种新型兼容容器为车辆应用中的 mPCM 构建一个容器