阿纳托利·扎夫多维耶夫 1, 安德烈·克拉帕图克 1, 蒂埃里·博丹 2, 埃里克·麦克唐纳 3, 达内什·莫汉 4, 若昂·奥利维拉 5, 亚历克斯·加伊沃隆斯基 1, 瓦列里·波兹尼亚科夫 1, 金亨燮 6, 弗朗索瓦·布里塞特 2, 马克西姆·霍赫洛夫 1, 马克·希顿 7, 马西莫·罗甘特 8, 米科拉·斯科里克 9, 德米特里·韦德尔 10, 罗曼·科津 1, 伊利亚·克洛奇科夫 1, 斯维亚托斯拉夫·莫特鲁尼奇 1
prep(等离子体旋转电极工艺,AMS 4999a)是一种公认的金属粉末,通过在纵向轴时熔化金属棒的末端。融化的金属被嘲笑,并形成凝固成球(粉末颗粒)的液滴。电极被等离子体融化。我们的粉末是根据准备过程的扩展而产生的,即所谓的ss-prep过程。这使我们能够提供更高质量和球形粉末(根据ISO 13320:2009)。我们已经通过单个步骤和相关机器显示了以序列顺序为您的信息的制造过程。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的工艺,通常需要其他制造技术(例如热处理和表面处理操作)才能获得高质量的组件。 为了优化给定组件的每个单独工艺,必须考虑和了解其在整个工艺链中的进展,这可以通过使用经过验证的模型来实现。 本文旨在概述可用于开发 MPBF 工艺链数字孪生的各种建模技术,包括物理实体和数字实体之间的数据传输方法和不确定性评估。 通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造过程链的模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的过程,通常需要其他制造技术(例如热处理和表面处理操作)来实现高质量的组件。为了优化给定组件的每个单独过程,必须考虑和了解其在整个过程链中的进展,这可以通过使用经过验证的模型来实现。本文旨在概述可用于开发 MPBF 流程链数字孪生的各种建模技术,包括物理和数字实体之间的数据传输方法和不确定性评估。通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造流程链模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
Name Position Company Email Abbott Furnace Jason Gabler Owner Advantage Metal Powder jjgabler@advantagempi.com Sandy Lawrie Advantage Sales sandy@advantagesales.biz Dave Green Human Resources Allegheny Coatings davidgreen@alleghenycoatings.com Corine Christoff Human Resources Alpha Precision Group Chris Adamson Human Resources American Axel Ridgway Chris.Adamson@aam.com Missy Bush人力资源美国Axel St. Marys Missy.bush@aam.com Amphenol高级传感器Emily Swanson人力资源Clarion clarion antered Metals eswanson@clarionsinterc.betsy schreiber comtec comtec betsy.schreiber @comtecmfg.comtecmfg.com资源domtar dashuri.aliko@domtar.com krista aletretto人力资源domtar krista.allegretto@domtar com.com使馆粉粉金属cortney Carlson Mundered gasbarre gasbarre products ccarlson@gasbarrecom carlson@gasbarre.com kbosnik@keystonepm.com wes brennen metco wbrennen@metcopm.com Morgan高级材料MPP P/M National Doug Cunningham Penn Penn pallet doug.cunningham@pennpallet.com Keith Armagost中学发展与研究Snoprshippedssdrshippedsdrshipped@gmail@gmail.gmail.com
黑色与白色比率M15-45层1 119.84 0.31 M15-45层2 115.96 0.30 M15-45层3 135.05 0.26 Mix1-Layer 1 94.49 0.37 0.37
目的:本文全面回顾了使用金属、合金和陶瓷粉末制造产品的增材和混合技术的文献。设计/方法/方法:对传统粉末工程技术进行了广泛的文献研究。通过使用知识工程方法,指出了各个技术的发展前景。结果:作为先进数字化生产 (ADP) 技术,使用金属、合金和陶瓷粉末制造产品的增材和混合技术分别位于“宽阔的橡树”和“根深蒂固的矮山松”技术树状矩阵的四分之二。这证明了它们具有最大的潜力和吸引力,以及它们在这方面的充分利用吸引力或巨大的发展机会。原创性/价值:根据增强的整体工业 4.0 模型,许多材料加工技术,其中包括使用金属、合金和陶瓷粉末制造产品的增材和混合技术,在产品制造技术中变得非常重要。它们不仅是粉末工程的重要组成部分,也是工业 4.0 概念下制造业发展的重要组成部分。关键词:粉末工程、粉末产品制造、粉末混合技术、粉末增材制造技术、技术潜力和吸引力的树状矩阵、整体增强型工业 4.0 模型对本文的引用应按以下方式给出:LA Dobrzański、LB Dobrzański、AD Dobrzańska-Danikiewicz,使用金属、合金和陶瓷粉末制造产品的增材和混合技术,材料科学与工程档案 102/2 (2020) 59-85。DOI:https://doi.org/10.5604/01.3001.0014.1525