我们研究了在平方晶格上具有基塔夫型相互作用的双层量子自旋液体模型的相图。我们表明,低能极限是由具有增强so(4)对称性的π-吹动模型描述的。Hubbard模型的抗磁性莫特过渡信号为双层自旋和轨道自由度的磁性碎片转变。除了各向异性局部顺序参数外,零散的“néel订单”还具有平面内部组件的非局部字符串顺序参数。相关的量子顺序的特征是当NéelVector沿ˆ Z方向而出现的Z 2×Z 2量规,而Z 2量规范则否则。我们以扰动计算为基础,这与现场理论分析一致。我们在讨论了这些阶段的低能量集体激发的讨论中,表明Z 2×Z 2相的金石玻色子是分数化的,非本地的。
在这封信中,我们研究了由耦合腔和机械模式组成的光力学系统的基态特性。当腔和机械频率之间的比率η倾向于无穷大时,给出了精确的解决方案。该解决方案通过打破连续或离散的对称性,表现出平衡量子相变(QPT),揭示了基态处于基态的连贯的光子占用。在U(1) - 破裂阶段,不稳定的金石模式可以激发。在具有Z 2对称性的模型中,我们在腔和机械模式的挤压真空之间的相互关系(在有限η)或单向(以η→∞中)的关系发现。尤其是,当腔沿所需的挤压参数挤压场驱动时,它可以修改Z 2破裂相的区域,并显着降低耦合强度到达QPTS。此外,通过将原子耦合到腔模式,混合系统可以在混合临界点处进行QPT,该点由光力学和光原子系统合作确定。这些结果表明,这种光力学系统补充了其他相变模型,以探索新的关键现象。
1. 2019 年 12 月 5 日至 6 日,来自会员国、联合国系统、其他国际和区域组织、私营部门和民间社会的部长和高级代表举行会议,全面审查了《2014-2024 年内陆发展中国家维也纳行动纲领》执行进展情况,确定了挑战并提出了在剩余五年内需要采取的行动建议。与会者在评估中指出,《维也纳行动纲领》优先领域取得了好坏参半的进展。虽然取得了一些切实进展,但与会者指出,仍然存在需要解决的重大差距和挑战。高级别中期审查通过了《维也纳行动纲领执行情况政治宣言》。《政治宣言》对内陆发展中国家自《维也纳行动纲领》通过以来取得的进展表示欢迎,强调了面临的主要挑战,并最后呼吁内陆发展中国家和发展伙伴采取有针对性的加速措施,在剩余五年内全面实现《维也纳行动纲领》。 2. 会议指出,内陆发展中国家在基本过境政策优先领域取得了进展。与会者强调的显著成就包括 2019 年 5 月生效的《非洲大陆自由贸易区协定》;2017 年阿富汗、土库曼斯坦、阿塞拜疆、土耳其和格鲁吉亚签署的《青金石贸易和过境协定》;2015 年为加强经济合作和贸易连通性而制定的孟加拉国、不丹、印度和尼泊尔倡议;2018 年 9 月生效的俄罗斯、中国和蒙古政府间国际道路运输协定;中国、蒙古和俄罗斯联邦关于经济走廊的协议;2015 年 1 月 1 日生效的欧亚经济联盟等。3. 在基础设施发展和维护优先领域,与会者指出,内陆发展中国家与其过境伙伴在升级铁路、公路、港口、航空运输和内陆水道以及建设和利用走廊方面取得了重要进展。其中突出的例子包括目前正在建设的博茨瓦纳和赞比亚之间的卡宗古拉大桥,这是两国之间的联合项目;连接伊朗的南北铁路走廊,土库曼斯坦和哈萨克斯坦之间的铁路连接线于 2014 年正式通车;全长 756 公里的埃塞俄比亚 - 吉布提标准轨铁路于 2016 年 10 月投入使用;修建马扎里沙里夫至赫拉特铁路走廊和从马扎里沙里夫经喀布尔的公路,以促进乌兹别克斯坦与阿富汗之间的贸易;修建穆尔蒂纽大桥将实现从巴西经巴拉圭到太平洋的东西向连接;卢旺达和坦桑尼亚沿中央走廊修建的联合铁路项目达累斯萨拉姆-伊萨卡-基加利标准轨铁路已经完成研究,目前处于融资/资源调动阶段;印度、阿富汗和伊朗正在合作开发恰巴哈尔港并致力于建设国际南北运输走廊;阿富汗最近与印度、土耳其、沙特阿拉伯、阿联酋、乌兹别克斯坦和印度尼西亚开通了空中走廊;以及将在拉丁美洲建设的生物海洋铁路走廊的计划。4.会议还强调了在建立陆港和物流中心方面取得的一些进展。2016年,乌兹别克斯坦建立了国际物流中心Termez-Cargo
The next generation planetary radar system on the Green Bank Telescope Patrick A. Taylor National Radio Astronomy Observatory, Green Bank Observatory Steven R. Wilkinson Raytheon Intelligence & Space Flora Paganelli National Radio Astronomy Observatory Ray Samaniego, Bishara Shamee, Aaron Wallace Raytheon Intelligence & Space Anthony J. Beasley Associated Universities Inc., National Radio Astronomy Observatory ABSTRACT The National Radio天文学天文台(NRAO),绿色银行天文台(GBO)和雷神智能与空间(RIS)正在为绿色银行望远镜(GBT)设计高功率的下一代行星雷达系统。作为一个试点项目,由RIS设计的低功率,KU波段发射器(在13.9 GHz时高达700 W)集成在GBO的100米GBT上,并在NRAO的TEN 25米长基线阵列(VLBA)Antennas上收到了雷达回声。这些观察结果产生了最高分辨率,基于地面的,合成的孔径雷达图像,在有史以来收集到的月球上的某些位置,提供了已销售的卫星的大小和旋转状态特征,并以21亿米的距离(〜5.5个月球距离)检测到近地球的小行星。设计工作继续以使用VLBA的500 kW,KU频段行星雷达系统的最终目标,使用VLBA和未来的下一代非常大的阵列(NGVLA)作为接收器,具有目标表征和成像的能力,用于太空情境/领域的意识和行星科学/行星科学/国防。作为近期的下一步,中等功率的KU波段发射器(至少为10 kW)的集成将在GBO/NRAO上开发端到端系统以进行实时雷达观测。1。引入空间意识,空间中自然和/或人为物体的预测知识和表征是美国(美国)空间活动的关键能力。在美国进行雷达天文学和行星防御的高功率雷达基础设施通常依靠国家科学基金会(NSF)的资产和国家航空航天及空间管理局(NASA)来执行这一任务。自2020年以来,波多黎各的Arecibo天文台威廉·E·戈登(William E. Gordon)望远镜倒塌,美国科学界对高功率雷达观察的访问已大大减少,从而使加利福尼亚州的70 m金石望远镜(DSS-14)在加利福尼亚州的高空网络中,仅在加利福尼亚州的一部分中,唯一的范围是一个范围的范围。在Arecibo崩溃时,Associtions Inc.(AUI)管理国家射电天文学观测站(NRAO)和绿色银行观测站(GBO),以及合作伙伴雷神智能与空间(RIS)刚刚使用100-m Robert C. Byrd Green Bank Telescope(gbt) 1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。 GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。 在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。详细信息在[1]中提供。在这里,我们讨论了2020年11月和2021年3月进行的GBT/VLBA雷达观察的实验和结果,以及针对高功率,下一代行星雷达系统的计划。NRAO/GBO/RIS团队目前正在开发的新技术具有直接解决和克服损失Arecibo望远镜造成的科学能力差距的潜力。除了实现前所未有的科学外,我们的下一代行星雷达系统还可以添加
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。