Dao等。 发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。 Pegah等。 与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。 但是,Knop等人进行的一项研究。 证明白藜芦醇并未直接构成GLP-1的释放[25]。 白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。 蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。 因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。Dao等。发现,在高脂喂养的糖尿病小鼠模型中,白藜芦醇增加了GLP-1的释放[23]。Pegah等。与糖尿病基团相比,白藜芦醇和益生菌的结构显着增加了非糖尿病大鼠的GLP-1和总抗氧化能力[24]。但是,Knop等人进行的一项研究。证明白藜芦醇并未直接构成GLP-1的释放[25]。白藜芦醇可能会通过acti vesti基因(例如SIRT1和FOXO基因)来表达GLP-1在肠道和CNS中的影响[16]。蛋白质的FoxO家族是参与各种生理和病情逻辑过程的转录因子,例如细胞稳态,干细胞维持,癌症,代谢和汽车双耳疾病[26]。因此,迄今为止,白藜芦醇对释放的白藜芦醇的机械性仍然存在争议。
尽管泵浦技术已经变得更小,但许多钛宝石系统需要单独的泵浦系统(或更大的集成泵浦系统,通常在 532nm 下运行),因此这些系统通常不是很紧凑。如果它们紧凑,功率往往会相应较低。钛宝石系统在 800nm 下以峰值效率运行,功率通常在这里引用。它们具有一系列可运行的波长,具体取决于制造商。标准范围是 650-1040nm,有时会扩展到 1100-1300 或仅从 680nm 或 700nm 开始。系统通过光学器件(通常是端镜和棱镜/标准具设置)的移动进行调整,以使特定波长穿过增益介质。功率输出在光谱调谐曲线上并不相同(代表性曲线如下所示)。掺镱光纤激光器(例如 Chromacity 1040)的工作原理是使用泵浦二极管(通常为 980nm)激发掺镱光纤,该光纤具有掺杂芯,可充当激光增益介质。然后将输出限制在激光器的小芯内。在许多传统应用领域,光纤激光器因其众多优势而开始取代钛宝石系统。在 Chromacity 1040 系统中,在系统内部创建了一个锁模腔,一侧是光纤,另一侧是输出耦合镜。然后使用透射光栅(工厂设置)压缩或拉伸来自此的输出,以使客户能够在 100fs 和 1.5ps 脉冲宽度之间进行选择。由于此定制选项,Chromacity 1040 具有自由空间输出(不是光纤)。
引言 在商用航空领域,预计 2012 年至 2031 年期间全球市场将需要超过 28,000 架新型大型商用飞机。大约有 10,000 架旧飞机需要更换。据估计,全球空中交通量(以客公里 (RPK) 计算)每年将增长 4.7 %。航空计划 ACARE 2020(欧盟航空研究与创新咨询委员会)和 Flightpath 2050 要求在未来几年内降低飞机的燃料消耗以及二氧化碳和氮氧化物排放量。多方面的空气动力学设计、热负荷和高机械、恶劣的环境和其他工作条件会在机身各个部件中产生异常大的动态应力。这些应力的大小和性质在不同的飞行阶段会进一步变化。这就需要开发能够承受这种变化应力的特殊材料。燃料成本进一步上涨、原材料来源稀缺、效率提升需求、新飞机(军用和民用)需求不断增长,这些因素迫使工程师们制造出更坚固但“尽可能轻便”的飞机框架、发动机和其他部件。为了满足当前和未来的需求,飞机行业必须在创新材料和设计技术以及新制造工艺方面进行大量技术开发。为了满足
A.P.,印度。 摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。 X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。 形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。 紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。 还检查了介电参数的频率和组成依赖性。 使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。 cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。 关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。A.P.,印度。摘要:本研究的重点是Zn X La 1 -X TiO 3(x = 0.1-0.7)(Zlto)纳米颗粒的合成和表征。X射线衍射模式证实了四方结构和相纯度,随着锌含量的增加,晶胞尺寸扩大。形态分析揭示了球形颗粒,杆和纳米级颗粒的形成。紫外可见光谱表明,根据“ x”的值,范围为3.01 eV至3.64 eV的带隙(E G)。还检查了介电参数的频率和组成依赖性。使用复杂的介电模量和阻抗光谱法有效地分析了空间电荷极化。cole-cole地块证实了Zlto材料的半导体性质,这是由完整的半圆形弧证明的,并揭示了存在非狂热型弛豫的存在。关键字:纳米颗粒;水热;结构;形态学;乐队差距;电介质。
研究了 C54 Ti(Si, -,Ge,,) 薄膜与 Si, -XGe, 衬底接触时的稳定性。C54 Ti(Si, -,Ge,,j) 薄膜由 Ti-Sii-,Ge, 固相金属化反应形成。结果表明,最初形成的 C54 Ti(Si, -,,Ge,,) 的 Ge 指数 y 与 Si, -XGeX 衬底的 Ge 指数 x 大致相同(即 yx)。C54 钛锗硅化物形成后,Si, -XGeX 衬底中的 Si 和 Ge 继续扩散到 C54 层中,大概是通过晶格和晶粒边界扩散。扩散到 C54 晶格中的部分 Si 取代了 C54 晶格上的 Ge,C54 Ti(Si, -,GeJZ 的 Ge 指数降低(即 yx)。这种偏析和沉淀增强了C54钛锗硅化物薄膜的团聚(即较低的团聚温度)。观察到可以使用快速热退火技术来减少退火时间并导致Ge偏析的减少。0 199.S美国物理学会。
d 中山大学化学学院生物无机与合成化学教育部重点实验室,广州 510275 基于钙钛矿纳米晶体的发光二极管 (PNCs-LED) 引起了下一代显示和照明技术的极大兴趣,因为它们的色纯度、高亮度和发光效率接近从器件结构中提取电致发光的固有极限。虽然现在是开发有效的光耦合策略以进一步提高器件性能的时候了,但 PNC-LED 的这一技术相关方面仍然没有明确的解决方案。在这里,遵循理论指导并且没有集成复杂的光子结构,我们实现了稳定的 PNC-LED,其 EQE 高达 29.2%(平均 EQE =24.7%),这大大突破了普通 PNC-LED 的耦合限制,并系统地超越了以前任何基于钙钛矿的器件。这种前所未有的性能的关键是引导薄至 10 nm 的 PNC 发射层中的复合区,我们通过使用用镍氧化物层重新表面化的 CsPbBr 3 PNC 精细平衡电子和空穴传输来实现这一点。超薄方法具有普遍性,原则上也适用于其他钙钛矿纳米结构,用于制造高效、颜色可调的透明 LED,非常适合不显眼的屏幕和显示器,并与光子元件的集成兼容,以进一步提高性能。关键词:卤化铅钙钛矿纳米晶体、发光二极管、外部量子效率、光耦合、透明 LED 近几年来,铅因其优越的光学性能和经济实惠的溶液加工性而备受推崇
摘要:多硫化物中间体 (Li2Sn,2<n≤8) 的穿梭和锂金属表面的枝晶生长阻碍了锂硫 (Li-S) 电池的实际应用。隔膜功能化提供了一种解决这些问题的直接方法。在此,我们展示了一种用于先进 Li-S 电池的多功能 MIL-125(Ti) 改性聚丙烯/聚乙烯隔膜。MIL-125(Ti) 是一种含钛的金属有机骨架 (MOF),具有开放骨架结构、高固有微孔率和路易斯酸特性。与原始隔膜相比,具有 MIL-125(Ti) 涂层的隔膜表现出更好的电解质润湿性和更低的电阻。独特的涂层层充当有效的物理和化学屏障区域,可捕获多硫化物物质,而不会影响 Li+的平稳传输。同时,MOF 中直径约为 1.5 纳米的高度有序微孔引导均匀的 Li + 镀层,从而抑制锂枝晶。因此,MOF 改性隔膜可显著提高 Li-S 电池的循环稳定性和倍率性能。在 0.2 C(1 C = 1675 mA g-1)下 200 次循环后的容量保持率超过 60%,在 2 C 下比容量为 612 mAh g-1。这种简便的方法为高性能 Li-S 电池提供了一条有效的途径。关键词:锂硫电池、金属有机框架、隔膜、穿梭效应、锂枝晶■ 介绍