a 辽宁科技大学辽宁省能源材料与电化学重点实验室,中国辽宁省鞍山市立山区千山中路 189 号,邮编 114051 b 埼玉工业大学先端科学研究实验室,日本深谷府井 1690 c 辽宁科技大学材料与冶金学院,中国辽宁省鞍山市立山区千山中路 189 号,邮编 114051 d 中钢集团鞍山热能研究院有限公司,中国辽宁省鞍山市高新区鞍前路 301 号,邮编 114051 e 中国科学院宁波材料技术与工程研究所,浙江省先进燃料电池与电解器技术重点实验室,浙江省宁波市中关西路 1219 号浙江 315201 海口市人民大道 58 号海南大学 570228
我正在寻找一位优秀的博士生,加入我们巴伐利亚电池技术中心(拜罗伊特大学 BayBatt)的团队,特别是研究钠离子电池和 ERC 资助的 4SBATT 项目的团队。我们的目标是开发钠离子电池和可持续的钠基固态电池作为后锂离子技术,解决当前锂离子技术的主要问题,即安全性、能量密度、成本和可持续性。在此背景下,我正在寻找一位有志于开发正极材料的学生。因此,特别欢迎具有无机/物理化学或材料科学背景的学生申请。了解电池和电化学以及编程技能是加分项。
摘要 英国对钠离子电池 (SIB) 制造的需求不断增加,提高了人们对电池生产对环境的负面影响和成本的认识。然而,由于缺乏有关 SIB 生产的数据,因此很难评估这些数据。本研究有助于介绍英国特定的生命周期评估 (LCA),用于生产钠离子电池,该电池采用钠镍锰镁钛层状氧化物 (NMMT) 阴极和硬碳 (HC) 阳极,并将其与锂离子电池 (LIB) 生产与锂镍钴锰层状氧化物 (NCM) 阴极和石墨 (Gr) 阳极进行比较。
细胞技术的转变可能威胁到与旧电池类型有关的回收活动中投资的经济可行性。例如,虽然碎屑可用于多种阴极技术,镍锰钴(NMC)和铁磷酸锂(LFP)电池,这是该价值链后面的两种最常用的锂离子化学作用。阴极化学的演变甚至可能使现有和预期的政府法规难以实现。某些规则根据电池重量授权材料回收率。但是,回收钠离子电池可能无法达到这些速率,钠离子电池刚刚开始浮出水面,但比锂离子细胞更重,而且价值较少。
作者对已发表文章的 ESI 中的一个小错误表示遗憾,发现图 S10 是图 4 的重复。在准备最终版本的手稿以供发表时,作者复制了图 4 并无意中将其粘贴为图 S10。更正后的图 S10 应如下所示。作者确认此错误不会影响本文的结论,并希望根据要求提供图 S10 的原始数据(请联系第一作者(Z. Li)和/或通讯作者(H. Liu))。作者感谢 Ziyang Guo 博士发现此错误。
特殊规定的修订内容包括: ● A40—扩大第 3 类中液态退敏爆炸物的适用范围; ● A69—增加对镓的引用; ● A88、A99、A146 和 A154—适用于钠离子电池; ● A107—允许含有危险货物的器具、物品或设备最多容纳 5 升和/或 5 千克对环境有害的物质; ● A144—明确执行特殊规定时,相应的飞机限制为“客机和货机”; ● A185 和 A214—增加对锂离子电池、锂金属电池和钠离子电池驱动的车辆新入境的引用和要求;以及, ● A190—澄清特殊规定 A2 不适用于按照 A190 装运的中子辐射探测器。
O3 型层状氧化物材料因其较高的容量而被视为最有前途的钠离子电池正极材料之一,然而,它们通常在高度脱钠状态下遭受结构损伤。为了获得稳定/高容量的 O3 型钠离子正极,成功制备了一系列富镍 O3 – Na[Ni x Fe y Mn 1-xy ]O 2 (x ¼ 0.6、0.7 和 0.8) 氧化物正极,并系统地研究了高压下的相变。结合电化学测量和结构表征,在2.0 – 4.2 V的电压范围内证明了Na+插层(脱)过程中从O3到O03、P3、O300相的结构转变。此外,揭示了高压容量衰减的几个原因:1)由于晶体结构中Na+较少导致高压相的热力学不稳定性;2)高压相演变过程中体积变化大,Na+扩散动力学较差;3)正极颗粒表面形成微裂纹和正极-电解质中间相。针对上述问题,我们设定了合理的截止电压4.0 V,避免了O3 00相的形成,减少了电解液的分解,获得了~152 mAh g 1 (~467 Wh kg 1 )的高可逆容量,在0.5C下经过200次循环后,容量保持率高达~84%,表现出了良好的储钠性能。这项研究为高性能富镍O3型钠离子正极的进一步发展提供了结构-性能关系方面的见解。