过去的铀开采和铣削活动的遗产仍然是引起关注的原因,需要评估和补救措施。在过去的三十年中,全球许多地区都认识到这个问题,但自冷战结束以来就受到了特别的关注。较大的铀生产商在处理这一遗产方面花费了大量精力和资源。但是,必须指出的是,寻找铀几乎涵盖了世界上所有国家。某些国家的结果是众多小型矿山和工厂的遗产。出于经济和其他原因,包括不太严格的环境标准以及当时缺乏意识,这些操作可能尚未适当地关闭,并使其免受放射学和一般安全的观点的安全。人们认为,具有这种类型的铀开采和铣削遗产的国家将受益于观点和经验的交流。由美国或德国等有重大问题的国家开发的补救策略和技术通常不按其他国家的问题规模,在这些国家无法实施。因此,该国际研讨会于2004年2月11日至13日在里斯本举行。这个研讨会标志着IAEA技术合作项目的成功完成,旨在帮助葡萄牙处理其50多个小地点的铀矿开采遗产。研讨会提供了一个论坛,用于分享该项目期间收集的经验。D. Read(Enterpris,Reading University)回顾了手稿。IAEA要感谢F. Carvalho和葡萄牙Sacavém的TecnológicoE InuctitutotecnológicoE组织,以组织和主持研讨会。感谢法国和西班牙Enusa的Radioprotection et desûretéNucléaire和Cogema和Cogema提供了相关的专业知识。负责该项目的IAEA官员,本出版物是W.E.核燃料循环和废物技术部的法尔克。
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
以及特定主题。有人指出,世界人口不断增长的可持续发展只有在可持续的环境中才能实现。人们越来越需要一个健康的环境,为他们提供食物和适当的住房空间。必须以低成本满足日益增长的能源需求,并将对环境的影响降至最低。我们环境中的天然放射性元素浓度通常低于危害公众健康的限度。但是,一旦放射性元素因工业活动而释放,就需要进行仔细监测。正如各种例子所示,如果人工放射性同位素因核设施事故而释放,可能会对环境产生严重影响。各种论文已经展示了地球科学研究在如何管理此类事故发生后的问题方面的作用。仍有许多问题有待研究,但地质学家应向公众公布其研究结果,以便更好地理解。
本文包含的信息包含美国 1995 年私人证券诉讼改革法所定义的“前瞻性陈述”和适用加拿大证券立法所定义的“前瞻性信息”。前瞻性信息和陈述包括但不限于:关于 IsoEnergy 和 Consolidated Uranium 预期或预计未来将发生或可能发生的活动、事件、情况或发展的陈述,包括但不限于关于交易完成和时间的陈述;CUR 股东对交易的批准;交易的益处、特点和潜力;与交易有关的法院、监管机构和其他同意和批准的时间、获得情况和预期影响;合并后公司董事会和管理团队的预期组成;矿产资源和矿产储量的确定;未来勘探、开发和扩张的前景;计划中的勘探活动;勘探和开发活动的后续步骤;开始商业生产的潜力、成功率和预期时间;完成发行的时间和条款的完成。一般情况下(但并非总是),前瞻性信息和陈述可以通过使用诸如“计划”、“预期”、“预计”、“预算”、“安排”、“估计”、“预测”、“打算”、“预期”或“相信”等词语或其负面含义或此类词语和短语的变体来识别,或表明某些行动、事件或结果“可能”、“可能”、“将”、“可能”或“将被采取”、“发生”或“实现”或其负面含义。
铀矿石是用于核燃料制备的必不可少的原料,目前正在占用。与大多数金属不同,铀的金属基因的特征是具有与地质环境中U沉积物的各种条件直接相关的极端多样性(Cuney,2009)。在全球范围内确定了800多个铀沉积物,国家原子能局(IAEA,2009年)至少提到了至少16种存款类型。当前的分类措施并不提供理解的迹象,以了解铀沉积物的形成,从而从遗传上歧视它们。迄今为止,已经明确建立了氧化铀地球化学与氧化铀形成的遗传条件之间的联系。氧化铀(理想情况下是UO 2),分别称为高温和抗杆菌低温品种的铀矿或沥青蓝色,是最常见和丰富的氧化铀(理想情况下是UO 2),分别称为高温和抗杆菌低温品种的铀矿或沥青蓝色,是最常见和丰富的
该联合报告是由NEA和IAEA秘书处编写的。来自IAEA的Mark Mihalasky领导了两个机构的贡献,NEA的Franco Michel-Sendis和Luminita Grancea领导。NEA和IAEA非常感谢NEA/IAEA铀集团成员提供的专注支持,以及附录1中列出的那些组织和个人的合作,该组织和个人回答了Red Book 2021 Questionnaire。在编译和准备第1和第3章时,国际原子能机构秘书处强调了让·雷内·布莱斯(JeanRenéBlaise)(法国顾问,法国顾问),亚历山大·博伊特索夫(Alexander Boytsov)(俄罗斯俄罗斯联邦),路易斯·洛佩斯(Tenex),路易斯·洛佩斯(LuisLópez),国家原子能委员会,阿根廷国家原子能委员会,詹姆斯·马拉特(James Marlatt)(詹姆斯·马拉特(James Marlatt)捷克共和国企业)和罗伯特·万斯(加拿大顾问)。所有人的投入和参与对于成功完成本报告至关重要。
3.与聋哑运动员的特别对话会 2023年聋哑足球世界锦标赛亚军成员冈田拓哉(埼玉县聋哑足球俱乐部、越谷FC)、中井健人(TDFC、LesPros Tokyo)、经理植松隼人 ★秘密嘉宾登场! !
1。ST Microelectronics completes acquisition of Norstel AB, a SiC wafer manufacturer, ST Microelectronics, 2019/12/2: https://www.st.com/content/st_com/ja/about/ media-center/press-item.html/c2930.html 2.ROHM集团Sicrystal和St Microelectronics同意提供碳化硅(SIC)Wafers多年来,ST Microelectronics,2020/1/15:https://newsroom.st.com/ja/ja/ja/media-ia-center/media-center/press-center/press-item/press-item.html/c2936.html,3。3.cree |。ST Microelectronics在意大利建立了新的集成SIC WAFER工厂,ST Microelectronics,2022/10/5:https://newsroom.st.com/ja/ja/media-center/media-center/press-item.htm.html/ c3124.html 5。Stmicro在意大利建立新的SIC WAFER工厂,在欧洲首次,Nikkei Crosstech,2022/10/18:https://xtps://xtech.nikkei.com/atcl/news/news/news/news/news/13938/13938/ 6.Infineon和Cree同意长期供应Sic Wafers,Infineon,2018/3/16:https://www.infineon.com/cmms/cmms/jp/jp/jp/jp/about-infineon/press/press/press/press/press/press/press/press-releases/2018/2018/Wolfspeed builds a new large-scale SiC factory in Germany, production begins in 2017, Nikkei Crosstech, 2023/2/28: https://xtech.nikkei.com/atcl/nxt/news/18/14642/ 8.Infineon收购了硅碳化物专家Siltechtra,Infineon,2018/12/7:https://www.infineon.com/cms/cms/cms/jp/jp/about-infineon/press/press/press/press/press-releases/2018/2018/2018/Infineon通过GT Advanced Technologies,Infineon,2020/11/9:https://wwwww.infineon.com/cms/cms/cms/jp/jp/about-infineon/ press/press/press/press/press/2020/infxx20202011-2011-2011-2011-014.html 10。有关电力半导体的SIC外延晶片:与Infineon Technologies签署的销售和联合开发协议,Showa Denko,2021年5月6日:https://wwwwww.resonac.com/jp/
摘要 近年来,锕系元素可迁移分数在污染场地风险评估中的重要性日益增加。了解238 U和232 Th在放射性废物上的吸附动力学和吸附过程的热力学对于理解它们的迁移率非常重要。本研究研究了莱纳斯先进材料厂水浸净化 (WLP) 残渣中 238 U和232 Th 的浸出过程,采用合成沉淀浸出程序与间歇法相结合的方式,模拟酸雨和严重水灾,获得了最佳浸出条件。研究了WLP 残渣中 238 U和232 Th 的初始浓度,以及在不同pH值和接触时间下238 U和232 Th 的浓度。结果表明,WLP 残渣中 238 U和232 Th的初始浓度分别为 6.6 和 206.1 mg/kg。总体而言,238 U 和 232 Th 浸出过程后浓度的最高值分别为 0.363 和 8.288 mg/kg。这些结果表明,在 pH 为 4 且接触时间相同(14 天)的情况下,238 U 和 232 Th 的最大再迁移潜力。在类似的持续时间内,238 U 和 232 Th 的最大浸出百分比分别为 5.50% 和 3.99%。此外,在 pH 为 7 时,238 U 和 232 Th 的最小浸出百分比分别为 4.7% 和 3.61%。因此,238 U 和 232 Th 的再迁移表明,浸出速率受所用浸出剂的 pH 值影响。 238 U 和 232 Th 的最大浓度是在 pH 值较低(例如 pH 4)时获得的。在 pH 值为 7 和 8 时,238 U 和 232 Th 的浸出量最小。因此,结合 SPLP 和批量方法对于估计 WLP 残渣中 232 Th 和 238 U 的浸出和再动员是可行的。组合方法可能有助于环境研究中的监测和风险评估。关键词:浸出、WLP 残渣、铀、钍