摘要 - 我们研究使用TIN/HF X ZR 1-X O 2/Interlayer/Si(MFIS)GATE堆栈的Si Fefet耐力疲劳期间,不同的层中和铁电材料对电荷捕获的影响。我们拥有具有不同层间(SIO 2或SION)和HF X ZR 1-X O 2材料(X = 0.75、0.6、0.5)的FeFET设备,并在耐力疲劳期间直接提取了电荷捕获。我们发现:1)层间中N元素的引入抑制了电荷捕获和缺陷的产生,并改善了耐力特征。2) As the spontaneous polarization ( P s ) of the Hf x Zr 1-x O 2 decreases from 25.9 μC/cm 2 (Hf 0.5 Zr 0.5 O 2 ) to 20.3 μC/cm 2 (Hf 0.6 Zr 0.4 O 2 ), the charge trapping behavior decreases, resulting in the slow degradation rate of memory window (MW) during program/erase cycling;另外,当P S进一步降低至8.1μc/cm 2(HF 0.75 ZR 0.25 O 2)时,初始MW几乎消失(仅〜0.02 V)。因此,P s的减少可以改善耐力特征。合同中,它也可以减少MW。我们的工作有助于设计MFIS Gate堆栈以提高耐力特征。
波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
快速、可逆、低功耗操控自旋纹理对于下一代自旋电子器件(如非易失性双极存储器、可切换自旋电流注入器或自旋场效应晶体管)至关重要。铁电拉什巴半导体 (FERSC) 是实现此类器件的理想材料。它们的铁电特性使得能够通过可逆和可切换的极化对拉什巴型自旋纹理进行电子控制。然而,只有极少数材料被确定属于此类多功能材料。这里,Pb 1 − x Ge x Te 被揭示为一种新型的纳米级 FERSC 系统。通过温度相关的 X 射线衍射证明了铁电相变和伴随的晶格畸变,并通过角分辨光电子能谱测量了它们对电子特性的影响。在少数纳米厚的外延异质结构中,较大的 Rashba 自旋分裂表现出随温度和 Ge 含量变化的宽调谐范围。本研究将 Pb 1 − x Ge x Te 定义为用于自旋电子学应用的高电位 FERSC 系统。
Chunrui Han 2,3* , Kenji Watanabe 4 , Takashi Taniguchi 4 , Kaihui Liu 1 , Jinhai Mao 5 , Wu Shi 6,7 , Bo Peng 8 ,
STO 在室温下是一种具有钙钛矿立方体结构的能带绝缘体。在 ≈ 105 K 时,氧八面体围绕其一个主轴发生反铁畸变旋转。[19] 原始的 STO 是一种量子顺电体。[20] 然而,在掺杂少量 Ca 或用 O 18 取代 O 16 后,铁电转变会恢复,其铁电居里温度取决于 Ca [21] 或 O 18 的浓度。[22,23] 产生氧空位,或用 La 取代 Sr 或用 Nb 取代 Ti,可以将 STO 变成导体,甚至是超导体,其转变温度非单调地取决于掺杂。已经证明,超导性可以存在于掺杂的 STO 的类铁电体中,甚至可以通过引入铁电性来增强。[24–30]
Niobate(LN)由于其丰富的材料特性,包括二阶非线性光学,电光和压电性特性,因此一直处于学术研究和工业应用的最前沿。LN多功能性的另一个方面源于在LN中使用微型甚至纳米规模的精度来设计铁电域的能力,这为设计具有改进性能的设计声学和光学设备提供了额外的自由度,并且只有在其他材料中才有可能。在这篇评论论文中,我们提供了针对LN开发的域工程技术的概述,其原理以及它们提供的典型域大小和模式均匀性,这对于需要具有良好可重复性的高分辨率域模式的设备很重要。它还强调了每种技术对应用程序的好处,局限性和适应性,以及可能的改进和未来的进步前景。此外,审查提供了域可视化方法的简要概述,这对于获得域质量/形状至关重要,并探讨了拟议的域工程方法的适应性,用于新兴的薄膜尼型乳核酸杆菌在绝缘剂平台上的薄膜,从而创造了下一个构成稳定范围和范围的集成范围和范围范围的范围和范围范围的范围。
,除非探索非传统计算体系结构和创新的存储解决方案,否则计算和数据存储的能源需求将继续呈指数增长。低能计算,包括内存架构,具有解决这些能力和环境挑战的潜力,尤其是四面体(Wurtzite-type)铁电挑战是绩效和与现有半导体过程集成的有希望的选择。Al 1-X sc X n合金是表现为铁电转换的少数四面体材料之一,但是切换极化所需的电场,即,强制性场E C在MV/CM的顺序上,该顺序是MV/CM的顺序,该顺序比传统的传统氧化物氧化物蛋白酶蛋白酶蛋白酶高度高约1-2个数量级。我们不是进一步的工程AL 1 -x SC X N和相关的合金,而是探索计算识别的替代途径,其开关屏障的新材料低于ALN,但仍具有足够高的内在分解场。超越了二进制化合物,我们探索了具有Wurtzite型结构的多元化合物的搜索空间。通过这次大规模搜索,我们确定了四个有希望的三元氮化物和氧化物,包括Mg 2 Pn 3,Mgsin 2,Li 2 Sio 3和Li 2 Geo 3,以实现实验实现和工程。在> 90%的被考虑的多元材料中,我们确定了独特的开关途径和非极性结构,这些结构与基于ALN的Maverials中通常假定的开关机制不同。我们的结果反驳了现有的设计原理,基于降低Wurtzite C/A晶格参数比率,同时支持两个新兴设计原理 - 离子性和键强度。
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2