摘要:研究了 LiCuFe 2 (VO 4 ) 3 的磁化率、比热容、介电常数和电极化。在零磁场下观察到 T N1 ∼ 9.95 K 和 T N2 ∼ 8.17 K 处的两个连续反铁磁转变。虽然在 T N1 处可以清楚地识别出一个介电峰,但测量的热电电流在 T N1 处也呈现出一个尖锐的峰,暗示与磁相关的铁电性。有趣的是,在 T N2 附近观察到另一个具有相反信号的热电峰,导致 T N2 以下的电极化消失。此外,电极化在外部磁场下被显著抑制,证明显著的磁电效应。这些结果表明,LiCuFe 2 (VO 4 ) 3 中的磁结构与铁电性之间存在着本质相关性,值得进一步研究其潜在机制。■ 简介
III 族氮化物半导体因其在固态照明和功率器件中的出色应用而备受关注,在下一代光电和电子设备的发展中发挥着关键作用。铁电性、铁磁性和超导性等新兴特性正在被整合到 III 族氮化物中,增强了它们在未来先进半导体和量子技术中的应用潜力。最近在氮化物材料(包括 ScAl(Ga)N 和 AlBN)中发现的铁电性实验证据激发了人们的极大研究热情。氮化物铁电体被认为是开发尖端微电子存储器、声学设备和量子设备的有前途的材料,有可能催化铁电特性与微电子的融合和增强功能。本期特刊将深入研究 III 族氮化物半导体,包括结构、特性和各种外延工艺。此外,它还旨在研究 III 族氮化物半导体在电子、光电和铁电领域的应用。
极化和铁电转变温度之间的关系 ( 5 ) – 即它们可能不是软模式铁电体;(ii) 实现铁电性的新物理机制几乎肯定会带来不同的物理缩放趋势表现和不同的温度、压力和时间特性依赖性;(iii) 这些材料可以在室温或接近室温下加工,具有稳健的特性响应,在某些情况下(例如、Al 1-x B x N)为 40
5材料研究中心纳米结构科学研究中心,国家材料科学研究所,1-1纳米基,塔苏卡巴,日本305-0044 *乐队。反演对称性在菱形堆积的过渡金属二分法元素(TMDC)中赋予它们与平面电动极化相关的界面铁电性。通过将扭转角作为旋钮构建菱形堆积的TMDC,可以生成具有交替平面偏振的抗fiferroelelectric域网络。在这里,我们证明了这种并行堆叠的扭曲WSE 2中这种空间周期性的铁电极化可以将其Moiré电位烙印在远程双层石墨烯上。这种遥远的Moiré电位产生了明显的卫星电阻峰,除了石墨烯中的电荷 - 中性点,它们可以通过WSE 2的扭曲角度调节。我们对有限位移场上铁电滞后的观察表明,Moiré由远程静电电势传递。通过MoiréFerroelectricity构建的超级晶格代表了一种高度灵活的方法,因为它们涉及Moiré构造层与电子传输层的分离。这个远程莫伊尔被确定为弱势势,可以与常规的莫伊尔共存。我们的结果通过利用Moiré铁电性提供了二维材料的工程带结构和特性的全面策略。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
摘要:本文研究了Ba离子改性的典型氧化物单轴铁电单晶Pb5Ge3O11的一些铁电性质,包括介电常数、DSC、铁电极化和电热效应(ECE)测量。测量结果表明,增加Ba掺杂会显著影响所有测量参数,主要是通过降低居里温度、逐渐扩散相变、降低极化值以及矫顽场来影响。整体ECE的下降受到极化降低的影响。与纯PGO单晶相比,这一降幅从1.2K降至0.2K。然而,扩散相变的影响增加了其发生范围(高达30K),这可能对应用有益。
在涉及铁电氧化物的外延异质结构中,应变与电极化之间存在强耦合,机械和静电边界条件的组合为设计具有极大增强或全新功能的新型人工层状材料提供了巨大的机会。仅应变工程就可用于显著提高铁电体的转变温度,控制铁弹畴的类型和排列,甚至稳定名义上非铁电材料的铁电性。[1–3] 同时控制静电边界条件可以进一步创建具有多种形态、复杂有序、非平凡极性拓扑和增强磁化率的纳米级畴模式。[4–13]
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍