Table 1 Lattice parameters of the as-prepared samples Parameters x = 0.0 x = 0.125 x = 0.25 x = 0.375 x = 0.5 β (degree) ±0.05 0.1518 0.1812 0.1940 0.2627 0.8281 D (nm) ±0.05 57.33 48.02 44.87 33.14 10.51 d (Å) 2.5234 2.5221 2.5213 2.5188 2.5149 a (Å) 8.3694 8.3647 8.3622 8.3542 8.3410 V (Å) 3 586.25 585.27 584.75 583.06 580.31 L A (Å) 3.6239 3.6219 3.6208 3.6173 3.6116 l b(Å)2.9585 2.9569 2.9560 2.9532 2.9485γ(Å)0.7495 0.7491 0.7488 0.7481 0.7469 D x(g /cm 3)5.1385 5.2448 5.2448 5.2448 5.3471 5.3471 5.4606 5.4606 5.55848 S(MON 33.15 102.15 P 227.19 190.42 177.98 131.57 41.81 𝜀0.0020 0.0020 0.0024 0.0026 0.0026 0.0036 0.0112δ×10 -4(nm -2)±0.05 3.05 3.04 4.33 4.33 4.96 4.96 9.10 9.10 90.40
从综合炼钢、高炉 (BF)-碱性氧气转炉流程向温室气体排放更低的替代流程的转变是钢铁行业脱碳的一个发展趋势。直接还原铁 (DRI)-电弧炉 (EAF) 路线就是这样一种流程。然而,当使用传统上在高炉中加工的低品位、高脉石铁矿石时,DRI-EAF 路线效率低下,而高炉占世界铁矿石供应的绝大部分。以低排放流程有效加工高炉级铁矿石的能力对于全球钢铁行业脱碳至关重要。本研究建议在使用高炉级铁矿石时使用电炉来提高整体工艺产量和效率,并将其与已建立的 DRI-EAF 工艺进行了比较。
此ASX版本中的材料不是也不构成要约,邀请或建议,以订阅或购买汉考克,传统铁矿石有限公司(LCY)或Hawthorn Resources Limited(HAW)的任何安全性,也不构成任何合同或承诺的基础。Hancock,LCY和HAW的每个人都不会对本材料的准确性,可靠性或完整性表示明示或暗示的代表或保修。Hancock,LCY和HAW,其董事,雇员,代理人和顾问不承担任何责任,包括因疏忽或疏忽误解的原因对任何人的责任,对于任何陈述,意见,信息或事项,明示或暗示的任何陈述,明示或暗示,在此材料中,或不在该材料中的任何遗漏中所包含的,或者不在该材料中,该材料的含义除外,以外的陈述。
成立于2018年,是一家太空技术公司。开发技术以使氧与极端环境中的氧气与月球矿物的分离,在极端环境中,零排放不是一种选择,而是必要的
摘要:矿产资源和能源部估计,工业部门是南非最大的能源消耗部门。工业中约 66% 的能源最终用途用于制造过程中的供热。南非工业以前是在煤炭和电力能源价格低廉的背景下发展起来的。这导致了大量低效且碳密集的工业流程。随着燃料价格上涨、化石燃料枯竭的前景以及全球不断努力减少环境影响,有必要开发用于供热的替代能源。相当一部分热能可以通过太阳能技术产生。然而,太阳能供应本质上是可变的,并不总是与需求相匹配。因此,有必要将热能存储系统集成到太阳能发电厂中以确保可用性。热能可以通过三种主要方式储存,即显热、潜热和热化学热形式。磁铁矿是一种在 ~570°C 时发生反铁磁相变的材料。这会导致材料热容量可逆性飙升。这对于热能存储应用非常有利,使其能够比其他典型的显热存储介质存储更多的热量。磁铁矿在南非随处可见,通常是其他生产过程的废品。开发了一个实验室规模的原型,以分析磁铁矿在以空气为工作流体的开放(非加压)系统中的热存储特性。磁铁矿在填料床反应器中使用燃气燃烧器加热,并使用环境空气排放。磁铁矿能够储存高达 1000 o C 的热量,这使其适用于 CSP 工厂。实验结果将用于验证 CFD 模型,为未来的 CSP 工厂设计和工业过程加热应用提供参考。
本研究重点介绍了铁矿石在新型高能量密度化学链固定床反应器中的应用,该反应器可用于储能和备用电源。该反应器设计用于对大型铁填料床进行缓慢扩散控制氧化,从而提供加热高压气流所需的能量,同时避免出现较大的温度分布和热点。进行了热重试验,以评估铁矿石在反应器条件下作为氧载体的性能,即在颗粒周围极低的 O 2 浓度和较长的反应时间内进行氧化。使用 dp 50 = 4 – 150 μ m 固体分析了粒度对反应性和最大转化率的影响。随着粒度减小,观察到转化率更高,在 980 ◦ C 下 dp 50 = 4 μ m 固体的快速氧化阶段结束时转化率高达 93%。在预期的反应器条件下,经过 30 次以上的氧化还原循环,确认了细小材料的可逆性能。这些测试表明,细颗粒是最大化反应堆能量存储密度的首选。进一步的分析证明了扩散控制氧化还原细铁矿石超过 100 分钟的可行性,从而表明它是所研究反应堆的有前途的候选材料。
本研究报告了使用铝粉作为还原剂对铁矿石废料进行激光辅助还原的方法。由于气候变化和全球变暖形势,寻找和/或开发绿色和可持续的钢铁生产工艺已变得至关重要。在这方面,本文提出了一种利用铁矿石的新方法,研究通过铝粉的金属热反应还原铁矿石废料的可能性。对铁矿石粉进行了激光处理,重点研究了 Fe 2 O 3 - Al 相互作用行为和铁矿石还原的程度。材料之间的反应以相当激烈的不受控制的方式进行,导致形成富铁域和氧化铝两个独立的相。此外,还观察到 Al 2 O 3 和 Fe 2 O 3 熔体的组合,以及金属间化合物等过渡区域,表明在孤立区域发生了不完全还原反应。还原铁液滴易于形成球形,主要集中在 Al 2 O 3 熔体表面附近或与氧化铁的界面处。采用扫描电子显微镜、能量色散 X 射线光谱和波长色散 X 射线光谱分析来分析反应产物的化学成分、微观结构和形态外观。使用高速成像研究过程现象并观察粒子运动行为的差异。此外,从 X 射线计算机微断层扫描获得的测量结果显示,在 Fe 2 O 3 - Al 粉末床的激光加工过程中,约有 2.4% 的铁被还原,很可能是由于反应时间不足或两种成分的当量比不合适。
摘要:到目前为止,用于治疗癌症的策略是不完美的,这产生了寻找更好,更安全的解决方案的需求。最大的问题是与肿瘤细胞缺乏选择性相互作用,这与副作用的发生有关,并显着降低了疗法的有效性。在癌症中使用纳米颗粒可以抵消这些问题。最有希望的纳米颗粒之一是磁铁矿。实施该纳米颗粒可以改善各种治疗方法,例如高温,靶向药物递送,癌症基因疗法和蛋白质治疗。在第一种情况下,其特征使磁铁矿在磁性高温中有用。磁铁矿与改变的磁场的相互作用会产生热量。此过程仅在患者体的所需部分中导致温度升高。在其他疗法中,基于磁铁矿的纳米颗粒可以作为各种治疗载荷的载体。磁场会将与药物相关的磁铁矿纳米颗粒引导到病理部位。因此,该材料可用于蛋白质和基因治疗或药物递送。由于磁铁矿纳米颗粒可用于各种类型的癌症治疗,因此对它们进行了广泛的研究。在此,我们总结了有关磁铁矿纳米颗粒的适用性的最新发现,还解决了智能纳米医学在肿瘤学疗法中面临的最关键问题。
本博士论文须遵守 Recognition-NoCommercial 4.0 许可证。知识共享西班牙。本博士论文已获得致谢 - 非商业 4.0 许可证的许可。知识共享西班牙文。本博士论文已获得 Creative Commons Attribution-NonCommercial 4.0 许可。西班牙许可证。