摘要最近建立了所有局部非热(NH)对称类别中点间隙拓扑的分类。但是,由此产生的元素周期表中的许多条目仅在正式环境中进行了讨论,并且仍然缺乏物理解释,从它们的庞大 - 边界通信角度来看。在这里,我们得出了所有二维相的边缘特征,并具有内在的点间隙拓扑。虽然在一个维点间隙拓扑中总是会导致NH皮肤效应,但NH边界物理学在两个维度上显着丰富。我们发现了两类的非铁质边缘状态:(1)地下点,其中皮肤效应仅在单个边缘动量下发生,而其他所有边缘动量都没有边缘状态。在半无限边界条件下,点间隙因此完全关闭,但仅在单个边缘动量下。(2)NH特殊点分散,其中边缘状态在所有边缘段持续存在,并提供异常数量的对称性保护的异常点。令人惊讶的是,后一类系统允许在所有通用边缘终止沿所有通用边缘终端具有有限的边缘状态有限的边缘状态。同时,点间隙仅沿真实和虚构的特征值轴关闭,实现了一种新型的NH光谱流。
在非铁晶准晶体中的非相互作用颗粒在复杂的能量平面中显示出定位 - 偏置和光谱相变,可以通过点隙拓扑来表征。在这里,我们研究了在非铁族准晶体中两个相互作用颗粒的光谱和动力学特征,该颗粒在不稳定的正弦电位中用有效的哈伯德模型与复杂的相位描述,并在没有任何遗传学的情况下揭示了一些有趣的效果。由于粒子相互作用引入的相关跳跃的有效减小,doublon状态,即结合的粒子状态,与单粒子状态相比,光谱和定位 - 偏置转变的阈值要低得多,导致迁移率边缘的出现。值得注意的是,由于Doubleons显示出更长的寿命,因此最初放置在远处的两个粒子倾向于束束并粘在一起,在长期的进化中形成了Doubleon状态,这种现象可以将其称为非Hermitian粒子堆。
2.变更:增加对储罐和空隙中的铁质管道进行 NACE 4/SSPC-SP 7 刷式喷砂清理的许可:在 FY-23 标准项目 009-32 更新中增加了新的段落 3.1.4.5,其中规定:“储罐和空隙中的现有铁质管道可按照 NACE 4/SSPC-SP 7 的 2.5 和 2.9 进行准备。” 理由:目前,FY-22,变更 1,标准项目 009-32,段落 3.1.4 要求在储罐内的任何铁质管道上应用相同的 SSPC-SP 10,接近白色金属级别的储罐表面喷砂清洁度。HII-NNS 在其变更提案中指出,要求对铁质管道进行 SSPC-SP 10 会产生涂层表面处理对管壁厚度产生不利影响的风险,并导致更换管道的计划外增长工作。HII-NNS 变更提案指出,航空母舰技术救济函;针对 CVN 74 的 2019 年 9 月 18 日颁布的 9631 Ser 05V/085 号法规、针对 CVN 73 的 2015 年 6 月 15 日颁布的 9631 Ser 05V/097 号法规以及针对 CVN 72 的 2011 年 9 月 20 日颁布的 9631 Ser 11/0600 号法规允许将水箱和空隙中现有的铁质管道和管道组件(饮用水、储备给水或淡水排水收集水箱除外)处理至 SSPC-SP 7 级刷洗喷砂清洁度水平。此外,普吉特海湾海军造船厂 (PSNS) 使用的现行当地工艺指令 IPI 0631-905 Rev F Ch- 2(日期为 2020 年 8 月 20 日)规定:“浸没区域的铁质和有色金属管道和电缆盘的准备方式应与周围区域一致。喷砂该区域时,根据适用情况,将管道准备为 SSPC-SP 7 或 SSPC-SP 16,但不得残留腐蚀或氧化皮。如果遗漏了小区域,可以按照上述规定将其准备为 SSPC-SP 2、SSPC-SP 7 或 SSPC-SP 16(不得在管道或电缆盘上使用机械工具)。除非相关技术规范有明确规定,否则不得对核相关管道进行准备或涂漆。”因此,按照 SSPC-SP 7 准备铁质管道的许可已经在航空母舰和其他级别的船舶上实施。SEA 05P2 没有数据显示按照 SSPC-SP 7 准备的铁质管道的涂层防腐性能不足,因此这一变化将限制涂层表面准备过程损坏管道的风险;使工作实践与现有程序保持一致;加快铁质管道表面准备过程;并减轻更换因表面准备而损坏的铁质管道而导致的进度延误风险。
• 与 PNNL、耶鲁大学、华盛顿大学、弗吉尼亚理工大学合作开展项目,研究镁铁质/超镁铁质岩石与 CO 2 的潜在地下响应/相互作用 • Big Sky RCSP – 华盛顿州 Wallula 的 1,000 吨注入项目
控制大气变暖需要立即减少二氧化碳(CO 2)的排放,以及从当前点源中的CO 2的主动去除和隔离。降低大气CO 2水平的一种有希望的策略是地质碳固存(GCS),其中CO 2注入地下并与地下反应以沉淀碳酸盐矿物质。最近已经报道了镁铁质和超镁铁质岩石的现场测试的快速矿化化。但是,与盐水含水层和耗尽的石油和天然气库不同,这些地层可能具有极低的毛孔性和渗透率,限制了储存量,并将反应性矿物质表面限制为预先存在的裂缝网络。结果,地球化学相互作用与断裂网络演化之间的耦合是长期可持续碳储存的关键组成部分。在本文中,我们总结了整合实验和建模方法的最新进展,以确定破裂的镁铁质/超镁铁质岩石系统中碳矿化的一阶过程。我们观察到骨折孔径,流动和表面特征在控制次级沉淀的数量,身份和形态中的关键作用,并呈现这些因素的影响可以反映在新开发的热 - 热力学 - 化学模型中。我们的发现为未来的碳矿化工作提供了路线图,因为我们提出了我们克服的最重要的系统组件和关键挑战,这些挑战是使GC能够在镁铁质和超镁铁质岩石中启用GC。
抽象背景虽然反编程的细胞死亡蛋白1(PD-1)免疫疗法在黑色素瘤治疗,低反应率和耐药性方面非常有效,极大地阻碍了其功效。由干扰素(IFN)-γ触发的肿瘤细胞肥大,源自肿瘤的CD8 + T细胞,极大地有助于免疫疗法的作用。然而,IFN -γ介导的铁凋亡和相关有希望的治疗策略的分子机制需要进一步澄清。microRNA(miRNA)参与了铁毒作用的执行,并且可以由多个载体系统地传递,这些载体对癌症表现出明显的治疗作用。通过RNA测序获得IFN -γ驱动的铁凋亡中的miRNA表达谱。生化测定法被用来阐明miR-21-3p在IFN-γ驱动的铁铁作用和潜在机制中的作用。miR-21-3p加载的金纳米颗粒并系统地应用以分析miR-21-3p在抗链庭移植肿瘤模型中的miR-21-3p在抗PD-1免疫疗法中的作用。首先获得了IFN -γ驱动的铁蛋白中黑色素瘤细胞的miRNA表达谱。然后,通过增强脂质过氧化的增强,上调的miR-21-3p被证明可以促进IFN-γ-介导的毛细毒性。miR-21-3p通过直接靶向硫氧还蛋白还原酶1(TXNRD1)来增强脂质活性氧(ROS)的产生,从而提高了铁凋亡敏感性。此外,通过促进肿瘤细胞屈服促进肿瘤中的miR-21-3p肿瘤中的miR-21-3p过表达与抗PD-1抗体协同。更重要的是,构建了由miR-21-3p负载的金纳米颗粒,并且它们的全身递送增加了抗PD-1抗体在临床前小鼠模型中而没有明显副作用的抗PD-1抗体的功效。最终,发现ATF3在IFN-γ驱动的铁胞菌病中促进miR-21-3p转录。结论miR-21–3 p上调有助于IFN-γ驱动的铁铁作用,并与抗PD-1抗体协同作用。纳米颗粒的miR-21–3 p的递送是一种有前途的治疗方法,可提高免疫疗法的功效而没有明显的全身副作用。
无机碳种类和沉淀固体碳酸盐矿物质,例如Cal-Cite(Caco 3),白云岩(Ca,Mg(Co 3)2)和Siderite(Feco 3)。在整个反应过程中,矿物质溶解和降水反应速率在很大程度上取决于溶液和固体反应物之间的表面积接触。尽管镁铁质岩石的地质来源具有一定的表面暴露,但距离足够远,无法实现每年隔离10 GTON的目标。科学家将需要通过采矿或盖盖在地面上增加对地球表面的镁铁质岩石的接触,然后将CO 2地下泵送。与其依靠镁铁质岩石的天然沉积物来隔离CO 2,而是引起矿化反应的工程粘土产物可能是一种更可行,更可靠的方法,可以减少大量排放。
摘要。这21个世纪的主要环境挑战是二氧化碳引起的气候变化,有限的研究重点是森林形成(例如超镁铁)的土壤碳捕集潜力。然而,了解土壤的物理化学特性对于确定土壤有机物的碳储存潜力至关重要,土壤有机物的碳储能是在巴拉望岛岛的矿物质富生态系统中进行了研究的。来自Brgy的超镁铁质森林。Rio Tuba,Batarazaw和Sitio Magarwak,Brgy。sta。卢尔德(Lourdes),菲律宾波多黎各城市,被考虑进行本研究。Pearson和Kruskal-Wallis检验用于建立土壤物理化学参数的层次结构,例如碳,pH,质地,粒子和散装密度,孔隙率和有机物(OM)涉及碳储能。大多数超镁铁质的土壤是沙质壤土或沙质粘土壤土,其散装BD和Clayey,其储存的碳比沙质土壤更多。在土壤特性中,土壤质地,尤其是粘土质土壤,在土壤有机碳(SOC)池中比土壤pH(p = 0.59),土壤孔隙率(0.39),散装密度(0.37)和颗粒密度(0.32)具有更大的影响力(P =1.46e⁻³)。SOC与BD成反比,土壤孔隙率直接受土壤深度影响。SOC和有机物在深度下降,而在根际层处较高的碳固相,从表层土壤中的4–7%到下层土壤中的3-5%。波多黎各普林斯加城的超镁铁矿地区储存的有机碳(99.05吨HA –1)比巴塔拉扎(Bataraza)(85.68吨ha –1)。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。