- 铝合金棒、杆和线材;轧制、拉制或冷加工,3003。- 铝合金 5052,棒、杆和线材;轧制、拉制或冷加工。- 铝合金 6061,棒、杆、线材和特殊形状;轧制、拉制或冷加工。- 铝合金 3003,板材和薄板。- 铝合金 5052,板材和薄板。- 铝合金 6061,板材和薄板。- 铜硅、铜锌硅和铜镍硅合金:棒、线材、形状、锻件和扁平产品(扁平线材、带材、薄板、棒材和板材)。- 铝合金永久和半永久模具铸造。- 铝合金砂型铸件。- 含铅和无铅黄铜:扁平产品(板材、棒材、薄板和带材)。- 含铅和无铅黄铜:棒材、型材、锻件和带成品边缘的扁平产品(棒材和带材)。- 海军黄铜:棒材、线材、型材、锻件和带成品边缘的扁平产品(棒材、扁线和带材)。- 海军黄铜:扁平产品(板材、棒材、薄板和带材)。- 银钎焊合金。- 青铜锰;棒材、型材、锻件和扁平产品(扁线、带材、板材、棒材和板材)。- 青铜、磷;棒材、板材、棒材、板材、带材、扁线和结构型材及特殊形状型材。- 镀铬(电沉积)。- 铜棒材和型材;以及带精加工边缘的扁平产品(扁线、带材和棒材)。- 铜铍合金棒材、棒材和线材(铜合金编号 172 和 173)。- 铜铍合金带材(铜合金编号 170 和 172)。- 镍铜合金棒、杆、板、片、带、线、锻件、结构和特殊形状型材。- 镍铜铝合金,锻造(UNS N05500)。- 镍铜合金和镍铜硅合金铸件。- 镀镍(电沉积)。
7. 适用领域: 1) ☐ 极低温度下使用的铝合金 ☐ NA 2) ☐ 预计经常与海水直接接触的船体结构中使用的铝合金 ☐ NA
动态再结晶完成后,在附加塑性变形热的作用下,部分较大晶粒吞噬较小晶粒并融合为较大晶粒,导致晶粒长大。由于塑性变形热小于摩擦热输入,因此增加进给速率引起的晶粒尺寸增大较小。发生动态回复和连续动态再结晶,其特征是亚晶粒形成和大晶粒相变比例增加。随着应变的增加,大晶粒相变转变为大晶粒相变,大晶粒相变数量分数越大,表示再结晶程度越高。如图7所示,N0.1和NO.2的大晶粒相变数量分数大于NO.3,说明NO.1和NO.2的再结晶程度
摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源
BeamIt组已开发出AM工艺,用于最高性能的铝合金:AL2024 RAM2C超轻铝合金3D由BeamIt打印的超轻铝合金在高温下表现良好:非常适合在赛车运动,汽车和航空部门应用。fornovo di taro(意大利帕尔马)2021年6月28日 - 每天都有更多的行业转向增材制造业,并投资不断发展的技术,以生产构成构成的组件,这些组件的表现优于那些用传统流程制成的组件。最近,尤其是在赛车领域的需求增加了铝合金,这些铝合金可以将维持高性能水平的能力结合在一起,而不论温度与极重的温度如何。Beamit Group迅速做出响应,Beamit集团总裁Mauro Antolotti说:“我们的首要任务是为客户提供高级材料和流程,以便他们可以直接而轻松地将这些创新转移到其产品上。这种不断发展的进步是我们小组长期战略不可或缺的一部分,并得到了一个强大,组织良好的团队的支持,致力于取得更具竞争力的成果。” 2024 RAM2C铝合金在室温和高温下的添加剂制造生产的过程与Beamit中的参数相比,与当前正在使用的其他合金相比,它在室温和高温下的性能更好,而且它非常艰难,而且非常轻巧。这些特征使其非常适合在赛车运动和汽车领域的应用,以用于悬架,底盘的一部分和动力总成的结构部分,因此基本上是发动机附近的任何部分。改变热处理实际上可以改变材料的性能。使用传统技术处理的合金通常用于飞机的结构部件,但是添加剂制造为航空航天设计的未来开辟了新的视野,从而使能够降低能源消耗和成本的更轻和更高的结构零件。到目前为止,包括2024年在内的2000系列铝合金在AM世界中因其组成而无法通过增材制造加工而闻名。合金(例如铜,锌和镁)中的元素在完全不同的温度下凝固,并且很难用激光融化它们以产生固体元件。该项目的第一步是与Elementum 3D合作:选择与Elementum 3D的AL2024-RAM2C材料打印,这是一种2000系列铝合金组成,并通过获得专利的RAM添加了。最艰巨的挑战是发现合金的理想过程窗口。Beamit Group的研发团队从完全集成的价值链提供的集成过程中受益匪浅,并采用了解决该问题的多学科方法。“ 2024合金完美地体现了我们谈论添加剂过程的综合发展时的意思。已经由一个多学科研究小组和使用独特的机械来研究和应用顶级精确过程,以实现我们的结果,就像在这种情况下一样,我们可以肯定地说,这绝对是非凡的。”铝合金一定需要进行热处理以达到最大的机械性能水平,因此为2024 RAM2C合金定制了一个特定的周期。除了为合金的热周期找到理想的解决方案外,Beamit Group的研发团队开发了不同的后打印过程,使客户能够具有具有自定义属性的模块化解决方案。Beamit组材料和特殊过程经理Alessandro Rizzi解释说:“很难通过L-PBF处理2000系列铝合金,因此开发这种材料确实激发了我们的动力。此外,热处理的作用对于AL2024 RAM2C至关重要,使我们能够试验不同的稳定过程,并保证了最大的性能,包括空气内和HIP-Q处理。”实际上,Beamit组目前正在研究高压热
MIL-DTL-32505 2014 年 11 月 13 日 详细规格 装甲板,铝合金,7017 可焊接和 7020 贴花 本规格经国防部各部门和机构批准使用 1. 范围 1.1 范围。本规格涵盖两种锻造铝装甲板合金,用于焊接和非焊接应用,公称厚度为 0.500 至 4.000 英寸(见 6.2)。锻造铝合金 AA7017 装甲的可焊性仅适用于这些厚度的 I 级装甲:1.000” 和 1.500”。 I 类 (AA7017) 材料可直接替代 MIL-DTL-46063H 修订 2 材料,即 AA7039,用于新设计,如果指定(见 6.2),用于旧设计或维修/更换。在本规范发布之前,尚未确定 II 类装甲的锻造铝合金 AA7020 装甲的验收要求和可焊性。当前测试正在进行中,完成后将修订本规范以包含 II 类 (AA7020) 装甲的所有相关要求和条件。II 类铝合金 AA7020 在本规范中列为占位符,直到上述测试程序完成。表格将填写 AA7020 要求;但是,目前这些值将替换为“TBD”(待定)。1.2 可焊性。本规范涵盖的材料已被证明可焊接到自身和其他可焊合金上(见 6.4)。 1.3 类
rs-class.org › 行业 › getIndustry 钢和铝合金焊接接头。21001700 无损检测:- 射线检查。-。НЕ ДЕЙСТВ。无效。СИЙСКИЙ МОРСКОЙ Р。
更正为:时效处理后 Al-Zn-Mg-Cu 铝合金中新 (Al, Zn) 3 Zr 沉淀物的形成及其对动态压缩的响应