结构性健康监测(SHM)是一种监视策略,它依赖于感兴趣的结构或组件上的传感器网络允许其连续监视,从而大大减少了两次连续检查之间的时间。在SHM框架中使用的几种非破坏性技术(NDT),超声引导的波,尤其是羔羊波中,事实证明,通过利用压电(PZT)传感器网络以使波浪启动和感受效率有效。专注于羔羊波,它们已被广泛用于成像和断层扫描方法[5] [6] [7]。但是,这些方法需要从信号中提取特征才能获得损坏索引(DIS)[1] [8] [9]。同样,由于有必要实时或实时的性能以实现SHM的目的,因此正在应用机器学习(ML)算法。但是,常规的ML方法通常是监督方法,并且不能解决对从信号提取损害特征的预处理阶段的需求[10] [11] [12]。
摘要 在室温下评估了 AA1100 和 AA1050 轧制铝板沿不同方向的高周疲劳 (HCF) 和低周疲劳 (LCF) 疲劳寿命。由于沿两个典型方向的样品表现出明显的各向异性,因此比较了四种类型的样品,分别表示为纵向 (L) 和横向 (T)。为此专门设计了悬臂平面弯曲和多类型疲劳试验机。在完全反向载荷下进行了挠度控制疲劳试验。AA1050 (L) 在 LCF 区域获得了最长的疲劳寿命,而 AA1100 (L) 样品在 HCF 区域具有最长的疲劳寿命。2016 亚历山大大学工程学院。由 Elsevier B.V. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
摘要 在室温下评估了 AA1100 和 AA1050 铝板沿不同方向的高周疲劳 (HCF) 和低周疲劳 (LCF) 疲劳寿命。由于沿两个典型方向的样品表现出明显的各向异性,因此比较了四种类型的样品,分别表示为纵向 (L) 和横向 (T)。为此专门设计了悬臂平面弯曲和多类型疲劳试验机。在完全反向载荷下进行了挠度控制疲劳试验。AA1050 (L) 在 LCF 区域获得了最长的疲劳寿命,而 AA1100 (L) 样品在 HCF 区域具有最长的疲劳寿命。2016 亚历山大大学工程学院。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。