羟基磷灰石(HA)由于其出色的生物相容性和生物学活性而广泛用于组织工程中。在这项研究中,使用无定形铝硅酸盐(AAS)对HA粉末进行了修饰。ha/AAS杂种是通过湿沉淀方法合成的。制备HA – AAS/壳聚糖 - 凝集素聚合物的复合材料,并使用X射线衍射测量法,傅立叶变换红外光谱,透射电子显微镜,扫描电子显微镜,孔径尺寸分布和表面积测量表进行表征。结果表明,具有棒状结构的HA和AAs的板是通过壳聚糖 - 胶质素网络连接到复合材料中的,从而导致由于聚合物涂层引起的特定表面积减少。AAS纳米颗粒含量较低的生物复合材料在3.1至7.3MPa的范围内表现出抗压强度,范围为0.11至0.21GPa,其范围内,该范围位于人类占用骨的范围内,其范围为2-12 MPa和0.05-0.5gpa,范围内。生物活性研究证明,复合材料样品增强了骨细胞细胞(MC3T3-E1)的增殖,并且比粉末样品表现出低的毒性。此类发现将未来用于取消骨骼应用的多功能材料阐明了Ha-AAS/壳聚糖 - 胶质素复合材料。
摘要。本研究旨在确定木材用彩色防火涂料的可燃性组别。通过防火试验发现,在(Na,K)2O-Al2O3-nSiO2-mH2O体系中,基于碱性铝硅酸盐粘合剂开发的防火矿物涂料组合物难燃且易燃,在可燃性组中处于G1和G2之间的中间位置。通过防火试验,烟气温度不超过临界值 - 高于260 [°C],样品的重量损失在5.56至10.17 [%]之间,燃烧速率不超过0.0026 [kg /(m2⋅s)]。鉴于烟气温度的裕度相当高,计划根据瑞典RICE的EN 13823进行进一步的防火试验。
沸石是一种结晶多孔的铝硅酸盐,几十年来一直是化学工业的重要组成部分,对其结构进行微调 1–6 是开发优质功能材料的一种有前途的方法。Al 3+ 同晶取代沸石骨架的四面体位点 (T 位点) 可一对一地提供一个负电荷,该负电荷可作为单价阳离子的离子交换位点。沸石表面通过离子交换捕获二价阳离子有利于水净化 7,8 和生产独特的催化剂,其中沉积的二价金属阳离子可作为活性位点。9,10 为了实现这些目标,考虑到广为接受的 Loewenstein 规则,根据该规则,由于稳定性差,最近相邻的 Al 对 (即 Al–O–Al 序列) 无法形成,11 沸石骨架需要通过由第二位组成的离子交换位点来富集
沸石是微孔晶体,这些晶体是由四面体SiO 4和Alo 4物种通过共享O原子相互联系的,它们在吸附,分离,离子交换和异构固体阳性催化中表现出了显着的应用前景[1]。通常,通过异态替代物,可以将Si和Al原子框架的一部分取代,例如Ti,Sn,Ge,Zr,Zr,B,P,V和Ga,导致杂原子沸石或金属硅酸盐[2-4]。Among these heteroatomic zeolites, titanosilicate is the most representative one, and it can catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation, selective oxidation of pyridine derivatives, and oxidation desulfurization [5-9]以及酸催化的反应,例如环氧化物的铃声反应[10-12],乙二胺冷凝[13]和贝克曼的氧电[14](如图1.1所示)。此外,钛硅酸盐的发现扩大了沸石的应用范围,因为异质催化剂从酸催化到氧化还原场。几项评论和专着提出了对合成和催化应用中钛硅酸盐的机会和挑战[3-9,15-18]。如图1.2所示,从1983年到2023年,与钛质有关的年度出版物数量迅速增加,在过去的十年中,这一数字一直保持在200–350。值得注意的是,钛硅酸盐可以根据其质地性能和孔径分为微孔,介孔和静脉型类型。其中,具有孤立的四面体Ti物种的微孔钛硅酸盐具有尺寸<2 nm的毛孔,其中包括中小孔和中孔的钛硅酸盐沸石,带有8或10元的环(MR),12 MR大孔沸石,大孔沸石,超大型孔的杂物和超大型孔的Zeolites和≥14mms。在具有三个字母代码的255个订购的沸石框架结构和国际沸石协会结构委员会(IZA)认可的部分无序的沸石结构中,28个结构
摘要:在T = 800、700°C和P = 1和2 kbar的si-al-na-k-Li-f-h-h-O模型花岗岩系统中进行研究,以及t = 600、550、500和400°C和P = 1 kbar,t = 600、550、500和400 kbar,以及来自2至50 wt t t t t t t的水。将初始组成设置的方式使所得硅酸盐熔体的组成接近花岗岩共晶。表明,在LI存在的情况下,系统中形成了两种不混溶的熔体 - 铝硅酸盐(L)和一个盐碱铝氟化物(LF)。表明,在800°°,°= 1 kbar和2 kbar和2 kbar和水含量> 10 wt。%,三个阶段在系统中是平衡的:L,LF和流体(FL)。不包含REE的冰糖(CRL)开始从700°C的盐熔体结晶。Quartz(QTZ)从600°C的硅酸盐融化中结晶,平衡相为L,LF,CRL,QTZ。在t = 500°C QTZ,Na和K铝氟化物和铝硅酸盐岩从铝硅酸盐熔体结晶。观察到CRL和QTZ的关节结晶。在盐和硅酸盐熔体中形成了冰晶石和硫酸盐的大晶体。同时,富含LI和REE的残留盐被部分保存。lf在400°C下完全结晶,L处于亚稳态。确定REE,SC,Y和LI积聚在盐中,最高为500°C,分区系数>>1。REE和SC在t = 500°C和400°C下的晶体相的组成。sc party isomorphine替换Al。REE通常形成其自身的LNF3类型氟化物阶段。
The inGPSmatiPn cPntained in this Application Note is intended tP assist ZPu in designing Xith RPgeSs &lastPmeSic MateSial 4PlutiPns *t is nPt intended tP and dPes nPt cSeate anZ XaSSanties, eYQSess PS imQlied, including anZ XaSSantZ PG meSchantabilitZ PS Gitness GPS a QaSticulaS QuSQPse PS that the Sesults shPXn in this Application Note Xill be achieWed bZ a useS GPS a QaSticulaS QuSQPse The useS shPuld deteSmine the suitabilitZ PG RPgeSsh &lastPmeSic .ateSials GPS each aQQlicatiPn The RPgeSs lPgP, BISCO, BISCO logo, PORON, PORON logo, DeWAL, DeWal徽标,Procell和Procell徽标ase tsademasls pg rpgess $ psqpsatipn ps pg pg pg pg pg pg subs 2024 rpgess $ psqpsatipn seseswed seseswed seseswed seseswed 0224 pd',Publicatipn 180 421 xxx spgesscps spgessc c cpm
镀金用于航天级机械部件(电子电路外壳盒、载板等)。在电子领域,镀金用于提供耐腐蚀的导电表面。它还广泛用于半导体行业,例如电气开关触点、连接器插针和管筒以及其他发生间歇性电接触的应用。镀金通常用于航空航天应用。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
一般特性。铝及其合金具有独特的性能组合,使铝成为用途最广泛、最经济、最具吸引力的金属材料之一,从柔软、高延展性的包装箔到要求最严格的工程应用。铝合金作为结构金属的使用量仅次于钢。铝的密度只有 2.7 g/cm 3 ,大约是钢(7.83 g/cm 3 )的三分之一。一立方英尺的钢重约 490 磅,而一立方英尺的铝只有约 170 磅。如此轻的重量,加上一些铝合金的高强度(超过结构钢),使我们能够设计和建造坚固、轻便的结构,这种结构对任何运动物体都特别有利,例如航天器和飞机以及所有类型的陆地和水运工具。铝能抵抗导致钢生锈的那种逐渐氧化。铝的暴露表面与氧气结合形成一层厚度仅为几千万分之一英寸的惰性氧化铝膜,阻止进一步氧化。而且,与铁锈不同,氧化铝膜不会剥落,露出新的表面,从而进一步氧化。如果铝的保护层被刮伤,它会立即重新密封。薄薄的氧化层本身紧紧贴在金属上,无色透明——肉眼看不见。铁和钢的变色和剥落
1884 年华盛顿纪念碑竣工时,一个六磅重的铝盖被放置在纪念碑顶部,当时铝非常稀有,被认为是一种贵金属和新奇事物。然而,在不到 100 年的时间里,铝就成为继铁之后使用最广泛的金属。铝的迅速崛起是其金属及其合金的优良品质以及经济优势的结果。在自然界中,铝与其他元素(主要是氧和硅)紧密结合,存在于靠近地球表面的红色粘土状铝土矿中。在地壳中自然存在的 92 种元素中,铝是第三大元素,含量为 8%,仅次于氧(47%)和硅(28%)。然而,由于从天然状态中提取纯铝非常困难,直到 1807 年,英国的汉弗莱·戴维爵士才将其鉴定出来,并以铝矾石 (lumine) 命名,这是罗马人认为粘土中存在的金属的名称。戴维成功地生产出少量相对纯净的钾,但未能分离出铝。1825 年,丹麦的汉斯·奥斯特 (Hans Oersted) 最终通过加热钾汞合金和氯化铝生产出一小块铝。