材料硅GAAS:CR CDTE平均原子重量14 32 50密度(g/cm3)2,33 5,32 5,32 5,85带隙(EV)1,12 1,43 1,5电阻率(OHM-CM) 480 400 100 𝜇𝜏电子> 1 1-5e-4〜1E-3孔> 1〜1e-4 1-4 1-10e-6稳定性(10分钟)<0.01%<0.1%<0.1%1%1-10%
This course aims at introducing the basic concepts and techniques in carrying out chemical analysis by using various modern spectroscopic and chromatographic instruments.Students will learn how to use modern instruments to determine the amounts of substances present in a mixture down to part per million levels (ppm), and identify the structure of a compound.Techniques such as UV-visible spectroscopy, infrared spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, gas chromatography and high performance liquid chromatography will be covered.This course will also discuss some common standard practices of collecting and preparing samples for laboratory testing, the accreditation system in testing laboratories.This course is conducted in the format of lecture.本课程旨在介绍化学分析中所用到的现代光谱和色谱仪器的基本概念和技术。学生将学习使用该 等仪器来分析浓度水平低至百万分之一的物质,并确定化合物的结构。课程内容包括紫外 − 可见光 谱法、红外线光谱法、质谱分析法、核磁共振、气相色谱法及高效能液相色谱法的操作技巧,以 及化验工作中的收集及制备样本的常用标准技巧和香港化验室所实行的认可系统。课程以讲课形 式进行。 Medium of Instruction:
资料来源:https://towardsdatascience.com/machine-learning-methods-to-aid-in-coronavirus-response-70df8bfc7861、https://bdtechtalks.com/2020/03/09/artificial-intelligence-covid-19-coronavirus/、https://news.yahoo.co.jp/byline/kazuhirotaira/20200326-00169744/
摘要:在这项工作中,使用生物聚合物壳聚糖和天然粘土来获得复合材料。这项研究的总体目的是通过添加粘土来改善纯壳聚糖珠的性能(孔隙率,热稳定性和密度),并获得基于壳聚糖的复合材料,以使用蒙古资源从水溶液中吸附重金属,并使用蒙古资源来吸附重金属,并研究吸附机制。天然粘土用酸和热进行预处理以去除杂质。将壳聚糖和预处理的粘土以不同的比率(8:1,8:2和8:3)混合,以获得化学加工,以获得复合珠以吸附铬离子。研究了Cr(III)和Cr(VI)的吸附,这是溶液pH,时间,温度,铬溶液的初始浓度和复合珠的质量的函数。发现,从壳聚糖的混合物中获得的复合珠和质量比为8:1和8:2的粘土分别具有最高的吸附能力(23.5和17.31 mg·g -g -1),Cr(iii)和Cr(iii)和Cr(vi)的吸附能力分别为最佳条件。使用XRD,SEM -EDS,BET和TG分析研究了通过将壳聚糖和粘土混合为8:1和8:2的复合材料的性质。根据XPS分析结果讨论了吸附机制。可以证实,铬离子以其原始形式吸附,例如Cr(iii)和Cr(VI),而无需进行氧化或还原反应。此外,在吸附过程中,CR(III)和Cr(VI)与复合珠的羟基和氨基群有关。吸附过程的动力学,热力学和等温分析表明,壳聚糖/粘土复合珠与CR(III)和Cr(VI)离子之间的相互作用可以视为二阶入学热反应,因此可以使用langmuir iSotherm模型来评估吸附。可以得出结论,复合珠可以用作去除铬离子的吸附剂。
图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
与图书馆或大多数大型数据库(如 EPA 的国家 STORET 水质数据库)一样,本文档包含来自不同来源、质量参差不齐的信息。在编撰本文档时,同行评审期刊文章以及质量控制机制相对复杂的数据库中都发现了错误 [366,649,940]。其中一些错误被找到并用“[sic]”符号标记,但毫无疑问其他错误还是漏掉了。编辑插入了 [sic] 符号,以指示看似错误或误导的信息或拼写,但仍然逐字引用,而不是任意更改作者所说的内容。很可能我们的一些工作中还添加了额外的转录错误和拼写错误。此外,对于如此复杂的主题,并不总是容易确定哪些是正确的,哪些是错误的,尤其是“专家”经常意见不一。在科学研究中,两位不同的研究人员得出不同的结果并导致他们得出不同的结论的情况并不少见。在编纂百科全书时,编辑们并没有试图解决这些冲突,而是简单地将其全部报告出来。