通过将无监督和监督的机器学习方法结合起来,我们提出了一个称为Usmorph的框架,以进行星系形态的自动分类。在这项工作中,我们通过提出基于Convnext大型模型编码的算法来更新无监督的机器学习(UML)步骤,以提高未标记的星系形态分类的效率。该方法可以概括为三个关键方面,如下所示:(1)卷积自动编码器用于图像降级和重新冲突,并且模型的旋转不变性通过极性坐标扩展提高; (2)利用名为Convnext的预训练的卷积神经网络(CNN)来编码图像数据。通过主体组合分析(PCA)维度降低进一步压缩了这些特征; (3)采用基于装袋的多模型投票分类算法来增强鲁棒性。,我们将此模型应用于宇宙场中的i -band样品的i -band图像。与原始的无监督方法相比,新方法所需的聚类组的数量从100减少到20。最后,我们设法对大约53%的星系进行了分类,从而显着提高了分类效率。为了验证形态层化的有效性,我们选择了M ∗> 10 10m⊙的大型星系进行形态学参数测试。分类结果与星系在多个参数表面上的物理特性之间的相应规则与现有演化模型一致。增强的UML方法将来将支持中国空间站望远镜。我们的方法证明了使用大型模型编码对星系形态进行分类的可行性,这不仅提高了星系形态分类的效率,而且还节省了时间和人力。此外,与原始UML模型相比,增强的分类性能在定性分析中更为明显,并且成功超过了更多的参数测试。
1。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。 可访问,可重现和协作生物医学分析的银河平台:2018年更新。 核酸res。 2018; 46:W537–44。Afgan E,Baker D,Batut B,Van Den Beek M,Bouvier D,čechM等。可访问,可重现和协作生物医学分析的银河平台:2018年更新。核酸res。2018; 46:W537–44。2018; 46:W537–44。
准备时间表的任务是作为一个团队结合和合作,以创建一个有能力在太空飞行期间享受自己的小组。培训将与您的宇航员一起完成,您将涵盖从失重准备,G-Force准备,紧急过程,感觉饱和度等所有内容。由经验丰富的教练执行,您将熟悉我们的小屋,并了解有关维珍银河飞行道路和经验所需的一切。作为维珍银河飞行团队的一部分,您将可以花时间进行任务操作,飞行员,工程师和其他人。这项准备工作将与时间平衡,以在宇航员校园内与亲人和船员一起放松。
从开始点开始,SWGO的主要重点是其在南半球的位置,可通往南部天空和人口稠密的银河平面地区。因此,银河科学是SWGO的动机和科学议程的关键组成部分:南方的地面粒子探测器,对非常高的能量伽马仪敏感。三个关键主题推动设计,因此用于板凳标记SWGO。这些是:脉冲脉冲组织周围的伽玛射线光环;银河差异使用伽马射线发射,包括费米气泡;以及搜索和研究Pevatrons,Pevatrons,pevatrons,Galactic Cosmic Rays的加速器,直到PEV能量。相应地,我们探讨了有希望的脉冲星和光晕候选者位置位于第2节中位置的约束。由于银河平面本质上挤满了沿着视线的相似位置的来源,尤其是沿螺旋臂,因此角度分辨率受到了可能来自伽马射线源的源混乱水平的限制,而伽马射线源近距离接近。然而,在某些情况下,扩展的伽马射线源将导致视力不可避免的视线重叠。用于研究低表面亮度银河差发射的研究,良好的背景排斥是至关重要的; SWGO计划达到可以合理地检测费米气泡的水平。为了检测Pevatrons并研究其光谱具有最高能量的特征,例如它们的光谱曲率,需要良好的能量分辨率和灵敏度(请参阅第3节)。带有SWGO的银河系γ射线科学是一个丰富的机会,可以研究来自pevatrons的最高能量银河系宇宙射线和γ射线光环中的粒子传输过程,包括粒子逃生和由于磁场而引起的。此外,可以通过表明过去活性的费米气泡研究我们星系的复杂进化历史。The ambient sea of Galactic cosmic rays, those which we isotropically detect at Earth, can be probed through studies of the Galactic diffuse gamma-ray emission that arises as a result of interactions with interstellar clouds (producing gamma-rays through the decay of neutral pions) and radiation fields (producing gamma-rays through the leptonic inverse Compton scattering process).
飞机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 C-5 银河 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 航空电子设备现代化计划 (AMP) 。。。。。。。。。。。。。。。。。。。。。。。5 可靠性增强再设计计划 (RERP) 。。。。。。。。。。。。6 立法退休限制。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 “坏演员。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 C-17 环球霸王 III 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 车队救援。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 精准空投 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12
上下文。SRG/EROSITA全套调查(ERASSS)结合了完整的天空覆盖范围的优点和电荷夫妇设备提供的能量分辨率,并提供了迄今为止漫射软X射线背景(SXRB)的最整体和最详细的视图。当太阳能电荷交换排放最小,提供SXRB的最清晰的视图时,第一个ERASS(ERASS1)以太阳能最小值完成。目标。我们旨在从西部银半球中SXRB的每个组成部分中提取空间和光谱信息,重点是局部热气泡(LHB)。方法。,我们通过将天空分为相等的信号到噪声箱,从西部银半球的几乎所有方向提取并分析了Erass1光谱。我们将所有垃圾箱装有已知背景成分的固定光谱模板。结果。我们发现LHB的温度在高纬度(| b |> 30°)处表现出南北二分法,南方更热,平均温度为Kt = 121。8±0。6 eV,北部为kt = 100。8±0。5 eV。 在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。 LHB发射度量(EM LHB)朝着银河杆近似增强。 EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。 特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。 这可能表明LHB向高银河纬度开放。5 eV。在低纬度时,LHB温度向银河平面,尤其是朝向内星系升高。LHB发射度量(EM LHB)朝着银河杆近似增强。EM LHB图显示了与局部灰尘柱密度的清晰抗相关性。特别是,我们发现尘埃腔隧道充满了热等离子体,可能形成更广泛的热星介质网络。这可能表明LHB向高银河纬度开放。假设恒定密度,我们还通过EM LHB构建了三维LHB模型。LHB的平均热压为P热 / K = 10 100 + 1200 - 1500 cm-3 K,值低于典型的超新星残留物和风吹出的气泡。
常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因应用或使用本文所述任何产品而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因本文所述任何产品的应用或使用而产生的任何责任;也不转让其专利权或他人权利下的任何许可。