随机幺正动力学是量子力学中描述系统与环境或外部场相互作用演化的一种有效方式。 其最初想法由 Caldeira 和 Leggett 提出,用于研究自旋集合与玻色子浴相互作用的有效动力学 [1]。 由于与未知自由度的相互作用引起的涨落和耗散,此类系统的性质预计会与孤立系统有明显不同。 随机幺正动力学也可用于理论研究量子混沌系统的典型和普遍行为。 因此,这类研究最近重新焕发了活力,特别是在随机幺正电路 [2-9] 以及传统多体系统 [10-16] 的背景下。通过增加随机性,这些系统应该会失去其与特殊性有关的优良性质,例如守恒定律,从而允许出现一般性质。这些包括纠缠的产生 [ 2 , 4 , 17 – 24 ]、信息的扰乱 [ 3 , 6 , 25 , 26 ] 或在收敛到热或非平衡稳态的系统中算符的扩展 [ 5 , 7 , 8 ]。特别是在一些量子随机模型 [ 4 , 14 , 15 , 19 ] 中,有人认为纠缠熵的增长和涨落受 Kardar-Parisi-Zhang (KPZ) 方程 [ 27 – 33 ] 支配。随机共形场论中纠缠增长的大偏差涨落也被证明属于 KPZ 类 [ 34 ]。最近,在超扩散非随机自旋链模型 [ 35 – 38 ] 中,还发现了 KPZ 方程的一些标度特征,这些特征与自旋-自旋关联函数的长期衰减有关。KPZ 类行为在量子多体系统中的普遍性程度仍是一个悬而未决的问题。
Organizations Represented: Addis Ababa Health Bureau, Africa Resource Centre (ARC), Association for Supply Chain Management (ASCM), Bureau of International Health Cooperation Philippines, Centrale d'Achat des Médicaments Essentiels et Génériques du Togo (CAMEG) Togo, Central de Medicamentos e Artigos Medicos (CMAM) Mozambique, Department of HIV & AIDS (DHA)马拉维,埃塞俄比亚制药供应服务(EPSS),食品和药品服务联邦卫生部(FMOH)尼日利亚,尼日利亚,食品和药物管理局(FDA)泰国,盖茨基金会,加维基金会 - 疫苗联盟,加纳卫生服务疫苗,加纳健康服务(GHS) (ISG),肯尼亚医疗用品管理局(KEMSA)联合医疗商店(JMS),肯尼亚,泰国玛哈多大学泰国,卫生科学管理科学(MSH),印度卫生与家庭福利部,卫生部柬埔寨卫生部,卫生部,卫生部,卫生部,卫生部,卫生部,卫生部,卫生部,卫生部。赞比亚,国家卫生安全办公室泰国,国家产品供应链管理计划(NPSCMP)尼日利亚,国家应急艾滋病毒和艾滋病应急响应委员会(Nercha)Eswatini,Eswatini,提供的人,计划实施单位(PIU)马拉维,马拉维,省级卫生办公室哥伦比亚哥伦比亚哥伦比亚哥伦比亚哥伦比亚省哥伦比亚,兰斯达省兰斯达省兰斯达德(Rwanda Medical)。 PharmaceutiquesduSénégal-Pharmacie Nationale d'Applovisionnement(SNE -PNA)塞内加尔,供应链资助论坛,全球基金,政府制药组织泰国,世界银行,美国国际发展机构(USAID)。
强相互作用模型通常具有比能级一对一映射更微妙的“对偶性”。这些映射可以是不可逆的,正如 Kramers 和 Wannier 的典型例子所表明的那样。我们分析了 XXZ 自旋链和其他三个模型共有的代数结构:每平方梯子上有一个粒子的里德堡阻塞玻色子、三态反铁磁体和两个以之字形耦合的伊辛链。该结构在四个模型之间产生不可逆映射,同时还保证所有模型都是可积的。我们利用来自融合类别的拓扑缺陷和 orbifold 构造的格子版本明确地构建这些映射,并使用它们给出描述其临界区域的明确共形场论配分函数。里德伯阶梯和伊辛阶梯还具有有趣的不可逆对称性,前者中一个对称性的自发破坏会导致不寻常的基态简并。
抽象沙门氏菌属。猪肉供应连锁店中的控制一直是一个具有挑战性的问题,不足的控制可能会带来很大的社会和经济后果。常规风险管理和风险管理方法和模型并不能够解决由沙门氏菌属引起的潜在食品安全冲击,因为它们主要专注于评估减少沙门氏菌属的措施。风险而不是发展弹性能力(例如,适应风险突然变化的灵活性)。我们的研究是将弹性概念纳入沙门氏菌属的定量建模的第一个。在猪肉供应链中传播。这项研究的目的是在沙门氏菌属引起的不同食品安全冲击下探索猪肉供应链的弹性性能,并研究干预措施对降低这些冲击对链条弹性性能的影响的有效性。方案分析表明,所研究的弹性策略或干预措施的有效性取决于风险效果(即默认,最小,最大,最大沙门氏菌属的最大水平。污染)猪肉供应链。对于猪肉供应链具有最低和默认的风险填充,应更多地关注猪对沙门氏菌属的弹性的增加。感染。对于具有最大风险的供应链,重点应放在改善屠宰场的性能上,例如仔细的偷偷摸摸,逻辑屠杀。得出结论,提高猪肉供应链的弹性性能可以促进安全的猪肉供应。
除静态纳米结构外,DNA纳米技术还能构建动态和自主开关。[18] 这些动态开关的操作可分为两大类:第一,通过分子相互作用操作;第二,通过外部刺激操作。用于控制纳米尺度运动的主要分子相互作用是DNA杂交(主要是立足点介导的链置换)和碱基堆积。由分子相互作用控制的此类运动的例子包括可重构等离子体装置、[19] 铰链、[20,21] 镊子、[18,22] 旋转装置、[23–26] 助行器、[27] 药物载体 [28,29] 和对分子或纳米颗粒进行分选的机器人。[30,31] 作为驱动机制的其他分子相互作用包括靶分子结合 [32,33] 和适体 [28,29] 以及核小体相互作用。 [34] 通过任何分子相互作用进行的操作(包括上述所有机制)具有可控分子识别和特异性的优点。 然而,操作速度受到分子扩散和相互作用动力学的限制,因此通常非常慢。 值得注意的是,已经开发出多种方法来提高动态 DNA 装置的响应速度。 另一方面,外部刺激如光、[35,36] 温度、[37] 离子、[11,23] pH、[38–40] 和电场 [21,41] 通常能够使操作速度提高很多个数量级。[41] 例如,Karna 等人利用相邻纳米结构域之间可逆的、pH 依赖性的 i-基序形成来促进卷曲 DNA 纳米弹簧的驱动,进而通过整合素偶联影响培养细胞的运动性。 [40] 然而,我们在此称之为外部刺激的任何一种,都存在着整体作用的局限性,而且缺乏分子识别所能提供的特异性。
