PCR 是一种分子生物学技术,可扩增单个或几个 DNA 拷贝,产生数千至数百万个拷贝。它由 Kary Mullis 于 1984 年开发,其基本原理由 Gobind Khorana 于 1971 年描述。Kary Mullis 因这项创新获得了 1993 年的诺贝尔奖和日本奖 (1)。PCR 广泛应用于医学和生物研究实验室的各种应用。它快速、廉价、简单,可从微量源 DNA 材料中扩增特定 DNA 片段。PCR 已迅速成为分子生物学中使用最广泛的技术之一。它用于医学诊断,包括分析微量遗传物质。它还用于法庭分析遗传物质,也用于动物行为和生态学的实地研究。引物合成和聚合酶纯化问题限制了进展。(2)
作为等温、无酶信号放大策略,杂交链式反应 (HCR) 和催化发夹组装 (CHA) 具有放大效率高、生物相容性好、反应温和、操作简便等优点。因此,它们已广泛应用于基于 DNA 的生物传感器,用于检测小分子、核酸和蛋白质。在这篇综述中,我们总结了采用典型和先进的 HCR 和 CHA 策略的基于 DNA 的传感器的最新进展,包括分支 HCR 或 CHA、局部 HCR 或 CHA 和级联反应。此外,还讨论了在生物传感应用中实现 HCR 和 CHA 的瓶颈,例如高背景信号、比酶辅助技术更低的放大效率、动力学慢、稳定性差以及细胞应用中 DNA 探针的内化。
羟基自由基 (OH) 是最先形成的。这些是极易反应的碎片或随机分子。它们可以以接近其扩散速度的速度与所有生物分子发生反应。这意味着它们会与路径上的第一个分子发生反应,而且几乎不可能阻止它们这样做。当羟基自由基与蛋白质、脂质(脂肪)或 DNA 发生反应时,它会夺取一个质子和一个电子,然后沉回到水的崇高化学稳定性中。但当然,夺取电子的行为会导致反应物缺少电子。因此,会形成另一个自由基,这次是蛋白质、脂质或 DNA 的一部分。这是所有自由基反应的基本特征——一个自由基会产生另一个自由基,如果这个自由基也具有反应性,那么就会发生链式反应。因此,自由基的基本特征是不成对的电子,而自由基化学的基本特征是链式反应。
一种可能导致火灾的现象 电池内部温度升高和产热的自我持续链式反应 热失控导致快速且不受控制的热量释放和气体释放(排气) 随着温度升高,电池内的易燃电解质可能达到其燃点,从而导致火灾 热失控期间释放的易燃气体可能着火,导致电池内其他组件燃烧,产生烟雾、有毒烟气并蔓延火势 热失控的原因
为了确保保护人类和环境免受电离辐射的有害影响,原子能机构安全标准制定了基本安全原则、要求和措施,以控制人类的辐射暴露和放射性物质向环境的释放,限制可能导致对核反应堆堆芯、核链式反应、放射源或任何其他辐射源失去控制的事件发生的可能性,并减轻此类事件发生后的后果。这些标准适用于产生辐射风险的设施和活动,包括核设施、辐射和放射源的使用、放射性物质的运输以及放射性废物的管理。
为了确保保护人类和环境免受电离辐射的有害影响,原子能机构安全标准制定了基本安全原则、要求和措施,以控制人类的辐射暴露和放射性物质向环境的释放,限制可能导致对核反应堆堆芯、核链式反应、放射源或任何其他辐射源失去控制的事件发生的可能性,并减轻此类事件发生后的后果。这些标准适用于产生辐射风险的设施和活动,包括核设施、辐射和放射源的使用、放射性物质的运输以及放射性废物的管理。
为了确保保护人类和环境免受电离辐射的有害影响,原子能机构安全标准制定了基本安全原则、要求和措施,以控制人类的辐射暴露和放射性物质向环境的释放,限制可能导致对核反应堆堆芯、核链式反应、放射源或任何其他辐射源失去控制的事件发生的可能性,并减轻此类事件发生后的后果。这些标准适用于产生辐射风险的设施和活动,包括核设施、辐射和放射源的使用、放射性物质的运输以及放射性废物的管理。
为了确保保护人类和环境免受电离辐射的有害影响,原子能机构安全标准制定了基本安全原则、要求和措施,以控制人类的辐射暴露和放射性物质向环境的释放,限制可能导致对核反应堆堆芯、核链式反应、放射源或任何其他辐射源失去控制的事件发生的可能性,并减轻此类事件发生后的后果。这些标准适用于产生辐射风险的设施和活动,包括核设施、辐射和放射源的使用、放射性物质的运输以及放射性废物的管理。
为了确保保护人类和环境免受电离辐射的有害影响,国际原子能机构安全标准制定了基本安全原则、要求和措施,以控制人类的辐射暴露和放射性物质向环境的释放,限制可能导致对核反应堆堆芯、核链式反应、放射源或任何其他辐射源失去控制的事件发生的可能性,并减轻此类事件发生后的后果。这些标准适用于引起辐射风险的设施和活动,包括核设施、辐射和放射源的使用、放射性物质的运输以及放射性废物的管理。