摘要 本文探讨了如何从区域视角提供一个富有洞察力的框架来研究能源转型中的机构分配,特别参考了重组电网以适应可再生能源扩张这一普遍存在的问题。理解这一领域的治理和机构需要一个概念框架,该框架可以捕捉基础设施的分层性质以及网络治理与其他政府领域之间的功能和地域不匹配。因此,本文采用了 Barry 的“技术区”概念,并用它来研究意大利两个地区的电网容量挑战和潜在解决方案。本文探讨了区域政府如何利用技术经济机会和固定因素在其行政区域内开发能源网络解决方案,并展示了区域级机构的性质(尽管是部分的)和范围。研究结果强调,区域不仅应被视为治理层,还应被视为激发创新的问题和行动场所。我们认为,虽然在所选案例中区域层面对网络基础设施的监管影响不大,但区域在直接或间接地使其领土可用于基础设施投资和调解潜在制约因素方面发挥着作用。
摘要:尽管该领域取得了开创性的进展,但由于药物过早释放到血液中以及生物分布不良,药物安全性和有效性仍然是一个问题。为了克服这些限制,我们报告了基于动态共价键的药物环化,以设计小分子抗癌药物喜树碱 (CPT) 的双重锁定。药物活性被氧化还原响应的二硫化物和 pH 响应的硼酸-水杨基羟肟酸酯“锁定”在环状结构中,并且仅在酸性 pH、活性氧和谷胱甘肽存在下通过无痕释放开启。值得注意的是,双重响应的 CPT 比不可裂解(永久闭合)类似物活性更高(100 倍)。我们进一步在主链中加入了生物正交手柄,用于功能化生成环状锁定、细胞靶向的肽和蛋白质 CPT,用于药物的靶向递送和在三阴性转移性乳腺癌细胞中的无痕释放,以在低纳摩尔浓度下抑制细胞生长。
成功地开发了一条与非海洋可生物降解钓鱼线相同程度的淋巴结伸长率,并展示了海洋生物降解性。钓鱼线在遗弃后沉入海底时会加速。实际上在实际海洋区域的现场测试中确认了钓鱼线的降解性。
产品规格 主动 被动 美国国际单位制 美国国际单位制 机械 外壳尺寸 33 英寸高 x Ø18 英寸 838 毫米 x Ø457 毫米 10 英寸高 x Ø18 英寸 254 毫米 x Ø457 毫米 质量(包括电缆) <50 磅 <22.7 千克 <25 磅 <11.3 千克 轴向捕获距离 6 英寸 角度捕获错位公差 俯仰/偏航 = ±5 度,滚动 = ±5 度 横向错位公差 ±2 英寸 线性接触速度公差 3 厘米/秒 捕获时间 <10 秒 捕获和锁存时间 <300 秒 注意:此数据仅供参考,可能随时更改。请联系 Sierra Space 获取设计数据。
热电材料通过Seebeck效果提供了一种简单的解决方案,可从各种热源进行直接热能电源。在全球范围内,目前约有2/3的主要能量被浪费为热量。[1]因此,存在着很大的作用,可以提高许多发电和工业过程的能源效率。当前的热材料远离理论效率极限远。正在进行的正在进行的研究工作,以提高效率并在废热收集中实现更广泛的应用。[2–4]为此目的探索的一类材料是有机半导体(OSC)。热电材料的效率取决于功绩ZT = S2σT /(κE +κpH)的无量纲图,其中S [V K –1]表示Seebeck系数; σ[S M –1],电导率; κE和κpH [W M –1 K –1],电子和
1海洋环境科学的国家主要实验室,沿海和湿地生态系统的主要实验室(教育部),沿海和海洋管理研究所,环境与生态学院,Xiamen University,Xiamen University,Xiamen,Fujian,中国,2个国家观察和研究站中国藤本富州气象学科学,南中国海遥感,测量和地图合作应用技术创新中心,南中国海开发研究所,自然资源部,广东,广东,中国广东,中国广东,中国,尤里奇,尤里斯大学的大气层学院中国广东的朱海,南方海洋科学与工程实验室(Zhuhai),珠海,中国广东,8号生态学学院,太阳森大学,孙森大学,深圳,广东,中国,中国,9 nanjing
气候变化(CC)被认为是对粮食安全的主要威胁之一,环境可持续性,包括二十一世纪的人类健康发展(Christensen等,2007; Seager等,2007)。政府间气候变化小组(IPCC)得出结论,气候在过去的一个世纪发生了变化,在过去的一个世纪中,人类活动对这些变化产生了影响,预计气候将在未来继续变化(IPCC,2007年)。即使在保护方案下,未来的气候变化也可能包括在某些地区(Christensen等,2007; Seager等,2007)的全球平均温度(高于2°C -4°C)的进一步升高,并在某些地区有显着干燥,并且在极端的极端潮流,热潮和热浪中的频率和严重程度增加(ipccccccccccc,2007年),2007年,2007年。
如时序图 (图 2) 所示,MUX 通道选择和 A/D 转换采用流水线方式,以最大程度地提高转换器的吞吐量。转换过程从选择所需的多路复用器通道对开始。将逻辑高电平应用于 LTC1390 的 CS 输入,通道对数据在 5MHz 时钟信号的上升沿上被时钟输入到每个数据 1 输入中。然后将芯片选择 MUX 拉低,锁存通道对选择数据。然后将选定 MUX 输入上的信号应用于 LTC1410 的差分输入。在 LTC1410 的转换启动输入 CONVST 被拉低之前 700ns,芯片选择 MUX 被拉低。这对应于 LTC1390 的 MUX 开关完全打开所需的最大时间。这可确保在 LTC1410 的 S/H 捕获其样本之前,输入信号已完全稳定。
如果任何通道发生低报警情况,模块将处于 2 级显示模式;条形图和数字显示屏将仅显示处于报警状态的通道。如果多个通道处于报警状态,将显示报警级别最高的通道,并且处于报警状态的任何其他通道的通道 LED 将闪烁。低报警 LED 将闪烁,低报警继电器改变状态,电流输出改变以指示报警。如果信号再次降至低设定点以下,则相应的报警继电器(如果编程为非锁存操作)将返回其正常状态,如果编程为锁存操作,则保持不变。电流输出将返回到正常输出水平。只要显示具有报警条件的通道,低报警 LED 仍将亮起。
所有操作控制的选择都通过前面板上的按键进行,显示屏会提示用户完成每个步骤。参数设置完成后,只需移除前挡板后面的跳线即可锁定参数。用户可以选择控制模式和参数、显示分辨率(1 或 0.1°)和单位(°F/°C)。操作员还可以利用范围功能,该功能限制了可以选择设定点的范围,或锁定用户无法更改设定点。新的单设定点控制器具有后部终端。CN9000A 型号的可选第二设定点和输出可设置为比例、开关或锁存限制控制,并可设置为跟踪或非跟踪设定点。循环时间、比例带和开关死区均独立于主设定点设置。