EngagedScholarship@CSU 为您提供免费开放的本论文。EngagedScholarship@CSU 的授权管理员已接受本论文并将其收录到 ETD 档案中。如需了解更多信息,请联系 library.es@csuohio.edu 。
摘要 ERA-Net SES 项目区域可再生能源电池 (R2EC) [ 1 ] 旨在开发一个可扩展的系统,用于分散、交互的“能源电池”,其中高度集中于本地产生的可再生能源。在欧洲背景下,“能源电池”本质上是可再生能源社区 (EC)。该系统旨在通过电力存储 (ES) 以及电子加热、热泵 (HP) 和电动汽车 (EV) 等高电力应用最大限度地利用本地产生的可再生能源。该系统还设计为与其他能源电池在本地交互,从而提高本地发电能源的利用率。分析了奥地利 (AT)、比利时 (BE) 和挪威 (NO) 三个国家的各种不同的相邻能源电池,并将结果用于开发区域和可再生能源电池系统。这种方法旨在开发定制的解决方案,以满足不同的当地和区域要求以及观察到的能源电池的电能需求。这三个国家在能源社区领域处于不同的区域发展水平,区域要求和条件也存在很大差异,因此这创造了一个独特的机会。在模拟层面上对这三个地区的 EC 的技术和经济可行性进行了全面调查。技术模拟结果显示,个人用户的自用量增加,整体电池
本接收器协议规范在NMEA协议框架的基础上,增加了自定义语句用于控制接收器的工作模式,以及查询接收器的产品信息等,自定义语句的标识为'P'。
摘要:神经影像数据通常包括多种模态,例如结构或功能磁共振成像、扩散张量成像和正电子发射断层扫描,它们为观察和分析大脑提供了多种视角。为了利用不同模态的互补表示,需要进行多模态融合以挖掘模态间和模态内信息。随着丰富信息的利用,结合多模态数据来探索健康和疾病状态下大脑的结构和功能特征正变得越来越流行。在本文中,我们首先回顾了用于融合多模态脑成像数据的广泛先进机器学习方法,大致分为无监督和监督学习策略。随后,讨论了一些代表性应用,包括它们如何帮助理解大脑区域化,如何改善行为表型和大脑衰老的预测,以及如何加速脑疾病的生物标志物探索。最后,我们讨论了一些令人兴奋的新兴趋势和重要的未来方向。总的来说,我们旨在全面概述脑成像融合方法及其成功应用,以及多尺度和大数据带来的挑战,这对开发新模型和平台提出了迫切的需求。
( K( ) ( ) High VPC1 VPC2 K K K ( K K ) 4 C C C = − = ).VPC1和VPC2的Valley Chern数量相等
本文旨在利用物联网 (IoT)、WiFi 模块、继电器模块和其他外围设备设计和构建智能门锁系统,为人们提供无与伦比的家庭入口控制和可访问性。传统门锁系统速度慢、不安全且易受攻击,需要人工干预才能锁定和解锁。因此,基于 IoT 的智能门锁系统提供了性能更好的适当锁保护机制。该系统包括微控制器 (NodeMCU ESP8266)、电磁锁、直流电池 (12V)、5V 3A 降压转换器 (LM7805)、WiFi 模块和开关设备 (继电器)。使用 3 个独立设备对系统设置进行了 10 次试验测试。所有试验都准确地解释了收到的命令并将相应的信号传输到接口的继电器模块。随后,继电器模块对集成电磁锁机构执行锁定/解锁操作,从而实现了研究的预期目标。
2 如何设计无源智能锁系统.......................................................................................................................................................................................3 2.1 单芯片解决方案....................................................................................................................................................................................................3 2.1.1 单芯片解决方案.......................................................................................................................................................................................................3 2.1.2 集成式智能锁系统.......................................................................................................................................................................3 2.1.3 集成式智能锁系统.......................................................................................................................................................................3 2.1.4 单芯片解决方案.......................................................................................................................................................................................................3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... ................. ... .................. 18 2.7 应急电源.................. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 23
Microlock HEPA SA 螺栓锁外壳采用摆动螺栓锁定机制,确保过滤器和外壳垫圈之间完美密封,并降低关键环境中空气旁路的可能性。此密封通过外壳内部的连续平面安装表面实现,该表面与过滤器上的周边垫圈配合。创建此密封只需将摆臂定位在过滤器旁边,然后定位并拧紧弹簧夹以将过滤器固定在外壳的周边安装表面上。