摘要 — 快速稳定锁相环 (PLL) 在许多需要快速获得稳定频率和相位的应用中起着关键作用。在现代通信标准中,这些 PLL 被广泛用于确保精确符合动态资源分配要求。在处理器中,这些 PLL 管理动态电压频率缩放。此外,快速稳定 PLL 加快了复杂电子雷达装置中频谱的扫描速度,这对成像和扫描雷达应用特别有利。这些 PLL 所表现出的快速响应也被用于量子技术,满足了对精确频率调整以有效操纵量子比特状态的迫切需求。本文将实现快速稳定 PLL 的策略主要分为五大类技术:增强型相位频率检测、混合多子系统、VCO 启动、变速和查找表或有限状态机。本文探讨了这些技术的基本操作原理,并介绍了文献中报道的每种方法的最佳稳定时间。最后,将根据这些技术的品质因数 (FoM)、稳定时间和调谐范围对采用这些技术的架构进行评估。
信号发生器是一种用途广泛的重要电子测试仪器,可用于蜂窝通信、雷达系统、微带天线和电子实验室等各个领域。本研究重点是模拟和设计工作频率范围为 35 MHz 至 3 GHz 的低相位噪声信号发生器。为此,使用 Arduino 板上的 Atmega 328P 微控制器来控制基于锁相环 (PLL) 概念的合成器。评估了信号发生器的性能,特别强调预测和分析 PLL 组件产生的相位噪声。为确保系统稳健,设计了三阶环路滤波器以有效抑制杂散。通过使用 ADIsimPLL 仿真工具进行仿真,获得了环路带宽 (10 kHz) 和相位裕度 (45°) 的最佳值。为此实现所选的锁相环芯片是 ADI 公司生产的 ADF4351。通过进行瞬态分析,确定了 PLL 系统从最小输出频率过渡到最大输出频率所需的时间。此外,使用阴极射线示波器研究了 35-100 MHz 频率范围内的发生器信号特性,并使用频谱分析仪研究了 101-3000 MHz 频率范围内的发生器信号特性。计算了不同频率(35 MHz、387 MHz、1 GHz、2 GHz 和 2.9 GHz)下的相位噪声水平,并在不同的偏移量(1 kHz、10 kHz、100 kHz 和 1 MHz)下进行了分析。相比之下,实验结果表明相位噪声水平高于通过模拟获得的结果。值得注意的是,随着输出频率的增加,相位噪声也相应增加。
1 德国图宾根马克斯普朗克生物控制论研究所认知过程生理学系,2 德国图宾根大学认知和系统神经科学 IMPRS,3 法国图宾根大学、法国原子能委员会、法国国家科学研究院、巴黎萨克雷大学、NeuroSpin 中心认知神经影像学部,91191 Gif/Yvette,4 中国科学院脑科学与智能技术卓越中心 (CEBSIT) 国际灵长类脑研究中心 (ICPBR),上海 201602,5 奥地利科学技术研究所 (IST Austria),奥地利克洛斯特新堡,6 英国曼彻斯特大学生物医学成像研究所成像科学中心,7 德国图宾根马克斯普朗克智能系统研究所和 MPI-ETH 学习系统中心经验推理系
一些研究已经探究了在自定步调的运动动作后不同时间的感知表现,并发现感知表现的频率特异性调制与动作相位锁定。据报道,这种与动作相关的调制具有各种频率和调制强度。为了在人群层面建立基本效应,我们让相对大量的参与者(n=50)执行自定步调的按钮按下,然后执行阈值检测任务,并且我们应用了固定和随机效应检验。令人惊讶的是,所有试验和参与者的综合数据没有显示任何显著的动作相关调制。然而,基于之前的研究,我们探索了这种调制取决于参与者内部状态的可能性。事实上,当我们根据相邻试验的表现对试验进行拆分时,低绩效时期的试验显示出约 17 Hz 的动作相关调制。当我们根据前一次试验的表现对试验进行拆分时,我们发现“失误”后的试验显示出约 17 Hz 的动作相关调制。最后,当我们根据参与者的误报率对他们进行分组时,我们发现没有误报的参与者表现出约 17 Hz 的动作相关调制。所有这些影响在随机效应测试中都很显著,支持对人群的推断。总之,这些发现表明,动作相关调制并不总是可检测的。然而,结果表明,特定的内部状态(例如较低的注意力投入度和/或较高的决策标准)以 beta 频率范围内的调制为特征。
蓝斑 (LC) 是去甲肾上腺素能投射到前脑的主要来源,在前额叶皮层中,它与决策和执行功能有关。睡眠期间,LC 神经元与皮层慢波振荡相位锁定。尽管人们对这种慢节奏感兴趣,但由于它们与行为的时间尺度相对应,因此在清醒状态下很少报告这种慢节奏。因此,我们研究了在执行注意力转移任务的清醒大鼠中,LC 神经元与超慢节奏的同步性。前额叶皮层和海马中的局部场电位 (LFP) 振荡周期约为 0.4 Hz,与关键迷宫位置的任务事件相位锁定。事实上,超慢节奏的连续周期显示出不同的波长,因此这些不是周期性振荡。同时记录的前额叶皮层和海马中的超慢节奏也显示出不同的周期持续时间。这里记录的大多数 LC 神经元(包括光遗传学识别的去甲肾上腺素能神经元)都与这些超慢节律相位锁定,LFP 探针上记录的海马和前额叶单元也是如此。超慢振荡还对伽马振幅进行相位调制,将这些行为时间尺度上的节律与协调神经元同步的节律联系起来。LC 神经元与超慢节律协同释放的去甲肾上腺素将有助于同步或重置这些大脑网络,从而实现行为适应。
胃体中的 Cajal 肌间质细胞网络充当着胃的“起搏器”,持续产生约 0.05 Hz 的电慢波,主要通过迷走神经传入神经传递到大脑。最近的一项研究将静息态功能磁共振成像 (rsfMRI) 与同步表面胃电图 (EGG) 相结合,将皮肤电极放置在上腹部,发现 12 个大脑区域的活动与胃基础电节律明显相位锁定。因此,我们探究使用空间独立成分分析 (ICA) 方法估计的大脑静息态网络 (RSN) 的波动是否可能与胃同步。在本研究中,为了确定任何 RSN 是否与胃节律相位锁定,对一名参与者进行了 22 次扫描;在每个会话中,获取两次 15 分钟的 EGG 和 rsfMRI 数据。三个会话的 EGG 数据具有微弱的胃信号而被排除;其余 19 个会话总共产生了 9.5 小时的数据。使用组 ICA 分析 rsfMRI 数据;估计 RSN 时间进程;对于每次运行,计算每个 RSN 和胃信号之间的锁相值 (PLV)。为了评估统计意义,所有“不匹配”数据对(在不同日期获取的 EGG 和 rsfMRI 数据)的 PLV 被用作替代数据来生成每个 RSN 的零分布。在总共 18 个 RSN 中,发现三个与基础胃节律显著锁相,即小脑网络、背部体感运动网络和默认模式网络。肠脑轴负责维持中枢神经系统与内脏之间的内感受反馈,其紊乱被认为与多种疾病有关;脑部 rsfMRI 数据中胃部亚慢节律的表现可能对临床人群研究有用。
此预印本的版权所有者于 2020 年 2 月 10 日发布此版本。;https://doi.org/10.1101/2020.02.09.940643 doi: bioRxiv preprint