基于多个电流水平下的增量容量峰值跟踪的锂离子电池 SoH 估算,用于在线应用 M. Maures a,* 、A. Capitaine a 、J.-Y. Delétage a 、J.-M. Vinassa a 、O. Briat aa Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, 法国 摘要 本文提出了一种基于增量容量 (IC) 峰值跟踪的高 C 速率健康状态 (SoH) 诊断方法的扩展。使用一组经过不同老化协议的 11 个 NCA 锂离子电池。以 C/20、C/10、C/5 和 C/2 进行充电和放电循环,然后用于 IC 分析。给出并建模了 IC 峰值变化与 SoH 之间的相关性,并显示它们是所有测试 C 速率的准确估计量。 1. 简介 由于对新可再生能源解决方案的强劲需求,如交通运输领域的电动汽车 (EV) 和多电动飞机 (MEA),或能源领域的电网电池存储,锂离子电池市场正达到历史最高水平。与其他应用相比,这些系统中的电池将面临更为严酷的工作条件:更高的功率和更大的温度变化,这两者都会严重影响电池的退化 [1,2]。因此,有必要跟踪它们的健康状态 (SoH) 并确定何时达到其使用寿命(对于特定应用)。SoH 通常定义为电池在给定时间的最大容量与其初始最大容量之比 [3]。存在不同的估算方法来量化电池的 SoH [4]:基于容量或阻抗、使用弛豫电压或基于增量容量 (IC) 或差分电压 (DV) 曲线。IC 分析提供了有关电池内部退化模式的重要信息 [5,6],因为每个峰值都是电池内部材料相变的结果 [7]。然而,正因为如此,IC 曲线通常是通过非常缓慢的充电/放电获得的 [8,9],这限制了它们的实用性。尽管如此,还是有人提出了基于 IC 峰的几何特性来量化电池 SoH 的估算方法。特别是,[8,9] 表明特定 IC 峰和谷的位置与 SoH 之间存在线性相关性,而 [8] 也表明
evs/phevs电动汽车/插电式混合动力电动汽车FMECA故障模式,效果和关键分析SOC的电荷型HEV混合动力汽车PHEV插件插件混合电动汽车BEV电池电动汽车IEA IEA国际能源ACEA ACEA欧洲汽车公司欧洲汽车制造商' lithium polymer SEI solid electrochemistry interphase IEC International Electrotechnical Commission TR Thermal runaway DSC differential scanning calorimeter ARC accelerated rate calorimetry C80 Calvet calorimeter SH self-heating XPS X-ray photoelectron spectroscopy TOF-SIMS Time Of Flight - Secondary Ion Mass Spectrometry NMR MAS Nuclear magnetic resonance Magic angle spinning XRD X射线衍射EPO EPO欧洲专利办公室PEO聚乙烯氧化物PVD物理蒸气沉积PEG聚乙烯甘油CMC CMC羧甲基纤维素磷酸铁磷酸铁含液含量LMC甲酸甲酯
目前,全球能源格局正面临前所未有的危机。为了解决这些困难,创造高效可靠的能源存储和转换技术至关重要。本综述讨论了两项重要的储能技术:水分解和锂离子电池。锂离子电池以其更高的能量密度、更长的效率和更低的成本彻底改变了便捷设备和电动机。同时,水分解通过电解过程为高能量密度的清洁燃料氢气的生成提供了一条途径。在本分析中,我们将探索最新的突破以及最新的材料和催化剂,以提高水分解的生产率和经济可行性。讨论了提高锂离子电池性能和安全性的电极材料、电解质和电池结构。本综述还讨论了这些技术在可再生能源系统中的集成,强调了它们在实现碳中和方面的互补作用。通过全面分析当前的研究和未来方向,我们强调了水分解和锂离子电池在可持续能源领域的关键重要性。
与《巴黎协定的目标》保持一致,以及将全球变暖限制为 + 2℃的全球承诺,法国致力于到2050年实现碳中立性。为了朝着这一雄心勃勃的目标铺平道路,法国制定了一个名为“国家低碳战略”(NLCS)的路线图。本文旨在评估NLCS情景的宏观经济影响。我们使用可计算的一般均衡模型来评估到2050年到2050年的碳中立性的能源过渡方案的经济影响。我们的模仿表明,要达到碳中立性的气候变化政策,包括充满重新分配的碳税,可能导致经济股息。我们发现,在绿色行业的投资和就业创造量增加了,这些绿色行业比化石燃料密集型行业和能源部门的就业破坏要高得多。尽管价格更高,需求增加,而GDP则高于参考方案。最终,与2050年的基线SCE NARIO相比,能源转变诱导GDP增加3.4%,就业增加2.8%。
原文发表时未注明资金来源:本研究由泉州市科技重大专项(批准号:2022GZ8)、闽南理工大学技术创新项目(批准号:23XTD113)、产学研合作资助。
Nahyun Shin、Moonsu Kim、Jaeyun Ha、Yong-Tae Kim、Jinsub Choi。柔性阳极 SnO2 纳米多孔结构均匀涂覆聚苯胺,作为锂离子电池的无粘合剂阳极。《电分析化学杂志》,2022 年,914,第 116296 页。�10.1016/j.jelechem.2022.116296�。�hal-03688072�
无需将电池从车上拆下即可了解电池的状况。这将使车主更容易获得电池退化数据,并允许将电池评定为可用、可再利用或可回收。研究:将建立高精度退化诊断方法,使用简化波形(例如方波和叠加波形)来分析电池组在安装时的电流-电压响应。研究实际和模型电池以及单个电池和电池组将支持实际应用。
锂离子电池 (LIB) 是现代技术不可或缺的一部分,但它们对易燃液体电解质的依赖带来了巨大的安全挑战,尤其是在电动汽车和大型储能系统中。本文介绍了利用定义-测量-分析-设计-优化-验证 (DMADOV) 方法开发阻燃电解质以提高 LIB 的安全性和性能。研究首先定义有机溶剂的性质与电化学稳定性之间的相关性,重点关注可能引起热失控的过度充电风险。通过对候选成分进行系统测量和分析,确定了影响阻燃电解质质量的关键因素。设计阶段优先建立 γ -丁内酯 (γ -BL) 的固体电解质界面 (SEI) 条件,以确保电解质在 LIB 中的性能和稳定性。优化阶段进一步优化了 SEI 形成条件,以解决初始设计期间发现的性能挑战,并结合相关制造工艺。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。研究表明,使用 γ -BL 显著降低了因过度充电引起的爆炸风险。最终验证阶段确认了阻燃电解质组成与优化的 SEI 条件的一致性,为实际应用建立了可行的电解质范围。值得注意的是,这项研究强调了稳健的 SEI 设计在开发具有高闪点有机溶剂(如 γ -BL)的阻燃电解质中的重要性,并通过专利技术的验证实验提供支持。这些进步不仅提高了 LIB 的安全性,而且还展示了提高电池性能的潜力,为能源存储解决方案的更广泛应用铺平了道路。
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂