R2非长末端重复(非LTR)逆转录子是多细胞真核生物中分布最广泛的移动遗传元件之一,并且对在人类基因组的转基因补充中的应用显示出希望。他们以精致的特异性将新基因插入28S核糖体DNA中的保守位点。r2进化枝是由逆转录子编码的蛋白的N末端的锌指(ZF)数量定义的,该蛋白被认为是为添加赋予DNA位点特异性的。在这里,我们阐明了进化枝之间的R2 N末端结构域的DNA识别的一般原则,并具有广泛的,具体的识别,仅需要一个或两个紧凑型域。DNA结合和保护测定法证明了广泛共享以及进化枝特异性的DNA相互作用。基因插入测定识别足以用于目标位点插入的N末端结构域,并揭示了进化枝特异性ZFS中第二链裂解或合成中的作用。我们的结果对理解非LTR逆转录座插入机制的进化多样化以及基于逆转录座子的基因疗法的设计具有意义。
摘要:基因组编辑是一种利用工程化核酸酶对许多生物体基因组进行精确修改的新兴技术。所有基因组编辑工具都依赖于在目标位点处创建双链断裂 (DSB),然后通过同源定向修复 (HDR) 或非同源末端连接 (NHEJ) 途径进行修复,从而产生所需的遗传修饰。主要的基因组编辑工具包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR/Cas9 系统。通过创建精确的基因型修饰,这些工具可以在各种科学领域(尤其是医学、生物研究和生物技术)中创建不同的表型。自 2010 年以来,随着 TALEN 的出现,模式生物的基因组修饰已成为可能。随后,2013 年,CRISP/Cas9 系统开启了基因组编辑研究的新时代,这可谓是生物学的一场革命。此外,在不久的将来,基因组编辑将能够治疗遗传疾病。此外,基因组编辑在生产具有有用特性的不同作物和牲畜方面的前景也十分光明。这些产品被称为非转基因生物 (GMO) 的编辑作物。在这篇综述中,将介绍并简要比较主要的基因组编辑工具。
抽象背景。全脑脑是罕见的(1/16,000个Livebirths),并且在早期胚胎发生期间发生严重的脑恶性肿瘤。畸形源于缺乏或不完整的前脑分裂,与改变的胚胎模式有关。目标。叙事审查,以识别和评估有关非遗传风险因素的证据。结果。所涉及的基因包括Sonic Hedgehog,锌指蛋白,六个同源物3。具有周围感受性高血糖的植物糖尿病是主要的非遗传危险因素。神经外胚层中氧化应激的增加,特别是神经rest细胞,似乎是主要机制。几种广泛的污染物,包括无机的ARSE-NIC,PFA和PCB,可能会通过改变元素因素(包括脂质和胰岛素)来增加造口前糖尿病的风险。“易感性受试者稀有暴露量”的情况表明,暴露于饮食污染物可能会增加植物前糖尿病的风险,因此在易感胚胎中会增加全脑脑的风险。结论。这种复杂的途径是合理的,值得研究;更重要的是,它突出了评估风险因素以及相关的不确定的重要性,以支持多因素畸形的主要预防策略。
摘要:微藻是地球上最丰富的光合单细胞真核生物之一,被认为是各种工业应用的替代可持续资源。衣藻是一种新兴的微藻模型,可通过多种生物技术工具进行操作,以生产高价值的生物产品,如生物燃料、生物活性肽、色素、保健食品和药物。具体而言,莱茵衣藻已成为不同基因编辑技术的研究对象,这些技术可用于调节微藻代谢物的产生。目前可用的主要核基因组编辑工具包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),以及最近发现的成簇的规律间隔的短回文重复序列 (CRISPR)-CRISPR 相关蛋白 (Cas) 核酸酶系统。后者表现出了有趣的编辑能力,已成为基因组编辑的重要工具。在本综述中,我们重点介绍了有关 CRISPR-Cas 在莱茵衣藻基因工程中的方法和应用的现有文献,包括最近的转化方法、最常用的生物信息学工具、Cas 蛋白和 sgRNA 表达的最佳策略、CRISPR-Cas 介导的基因敲入/敲除策略,以及最后与 CRISPR 表达和修饰方法相关的文献。
成簇的规律间隔短回文重复序列 (CRISPR) 的发展引发了继锌指核酸酶和转录激活因子样效应物核酸酶之后的基因组工程浪潮,并使基因编辑成为预防和治疗遗传疾病的一种有前途的策略。然而,由于一些技术问题对其安全性和有效性构成挑战,并且缺乏适当的临床法规使其在不影响人类伦理的情况下向改善人类健康的方向发展,基因编辑尚未在临床上得到广泛应用。通过系统地研究基因编辑工具的肿瘤学应用及其医学转化的关键挑战因素,基因组编辑对癌症驱动基因的发现、肿瘤细胞表观基因组正常化、靶向递送、癌症动物模型的建立以及临床上的癌症免疫治疗和预防有着重大贡献。以 CRISPR 为代表的基因编辑工具有望成为精确控制癌症发生和发展的有前途的策略。然而,在将 CRISPR 纳入下一代分子精准医学之前,一些技术问题和伦理问题是需要妥善解决的严重问题。鉴于此,本文讨论了限制脱靶效应的新技术发展,并重点介绍了使用基因编辑方法治疗无法治愈的癌症。
摘要PRP SC是细胞prion蛋白(PRP C)的一种错误折叠的,可聚集的亚同工型,是负责人类和其他哺乳动物致命神经退行性疾病的传染性prion剂。PRP SC可以采用不同的致病构象(prion菌株),这些构型可以抵抗潜在的药物或获得耐药性,这对有效疗法的发展构成了挑战。由于PRP C是任何prion菌株的义务前体,并且是Prion神经毒性的介体,因此它代表了prion疾病的有吸引力的治疗靶标。在此MinireView中,我们简要概述了靶向PRP C的方法,并讨论了我们最近对Zn(II)-BNPYP(一种prp c -prp c -targeting卟啉粘蛋白,具有前所未有的双峰作用机制。我们认为,对Zn(ii)-BNPYP靶向PRP C可能导致新的双重机理抗prion化合物的分子机制的深入理解。关键词:抗腐蚀药物;抗PRP C抗体;反义寡核苷酸;神经变性;药理学伴侣;卟啉prion病; prp c degrader; prp c脱落;锌指抑制剂
摘要 :癌症已成为全球重大的社会经济负担,每年有数百万新病例和死亡病例。生物工程这一前景广阔的领域最近取得了重大进展,为抗击癌症提供了新方法。在各种遗传工具的可用性和技术的快速进步的支持下,人们越来越关注对人类疾病分子机制的理解。这些发展使得最新的基因治疗技术能够用于癌症治疗,包括基因编辑、基因缺失和通过 TALEN、锌指、RNAi、CRISPR、定点诱变 (SDM) 和酶疗法等方法纠正缺陷基因以调节催化活性。此外,生物工程疫苗(如 mRNA 疫苗)、生物信息学、计算工具、人工智能 (AI)、纳米技术和化学疗法正在成为重要的癌症治疗策略。其中,基因编辑和基因治疗近年来特别受到关注,并经常与其他治疗方法结合使用。酶工程和纳米技术的进步也取得了重大进展。人工智能和生物信息学有助于更精确地诊断、预测和预后,从而实现癌症和肿瘤的个性化治疗。人工智能增强的成像和放射治疗改善了手术效果,即使是在偏远地区。精准肿瘤学已经出现,利用细菌和病毒直接针对肿瘤。在这篇评论中,我们讨论了各种癌症疗法的最新进展和挑战。
尽管大量生物(害虫、病原体)和非生物(干旱、寒冷)压力源影响着全球粮食需求,但自文明诞生之日起,农业就支撑着人类的生活。在过去 50 年中,对植物细胞和分子机制的了解不断加深,推动了生物技术的新创新,从而通过植物基因工程引入了所需的基因/特性。锌指核酸酶 (ZFN)、转录激活因子样效应物核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列 (CRISPR) 等靶向基因组编辑技术已成为改良作物的有力工具。事实证明,这种新的 CRISPR 技术是一种高效、直接且成本低廉的过程。它适用于大多数植物物种,靶向多个基因,并被用于设计植物代谢途径以产生对病原体和非生物压力源的抵抗力。这些新型基因组编辑 (GE) 技术有望实现联合国“零饥饿”和“良好的人类健康和福祉”的可持续发展目标。这些技术可以更有效地开发转基因作物,并有助于加快美国农业部 (USDA)、食品药品监督管理局 (FDA) 和环境保护署 (EPA) 进行的监管审批和风险评估。
摘要:这是遗传学在基因组编辑领域取得的辉煌发展,基因组编辑包括对不同物种内细胞 DNA 序列的精确改变。目前最令人着迷的基因组编辑技术之一是成簇的规则间隔回文重复序列 (CRISPR) 及其相关蛋白 9 (CRISPR-Cas9),由于其有效性,它们在短时间内深入融入了研究领域。它成为广泛生物和治疗应用中使用的标准工具。此外,需要可靠的疾病模型来提高医疗保健质量。CRISPR-Cas9 有可能通过生成细胞模型来丰富我们在遗传学方面的知识,这些模型可以模拟各种人类疾病,以更好地了解疾病后果并开发新的治疗方法。CRISPR-Cas9 提供的基因组编辑精确度正在为基因治疗在临床试验中的扩展铺平道路,以治疗多种物种的多种遗传疾病。本综述文章将讨论基因组编辑工具:CRISPR-Cas9、锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN)。它还将涵盖 CRISPR-Cas9 技术在生成用于新型疗法的细胞疾病模型方面的重要性、其在基因治疗中的应用以及增强其特异性的新策略所面临的挑战。
摘要最近,工程化的核酸酶具有革命的基因组编辑,以在复杂的真核基因组中的特定位点扰动基因表达。这些基因组编辑工具的三个重要类别是锌指核酸酶(ZFN),梅甘(Meganu)和转录激活剂样效应核酸蛋白酶(TALEN),它们用作构成靶标特异性DNA结合结构域和分子scissors scissors Orecartors orcissor or Cilliction scissor or Crimentector或bigractionals的杂交系统。此外,最近的II型II型定期间隔间的短质体重复序列(CRISPR)相关蛋白(CRISPR/ CAS9)系统已成为最喜欢的植物基因组编辑工具,用于其精确和RNA的基于RNA的特异性,这与依赖于蛋白质特异性的对应物不同。质粒介导的多个SGRNA和CAS9的质粒介导的共传递可以同时改变一个以上的靶基因座,从而实现多重基因组编辑。在这篇综述中,我们讨论了CRISPR/CAS9技术机制,理论及其在植物和农业中的应用中的最新进展。我们还建议CRISPR/CAS9作为有效的基因组编辑工具,具有作物改善和研究基因调节机械性和染色质重塑的巨大潜力。