基于量子力学的抽象随机数生成器(RNG)由于其安全性和与常规发电机相比的安全性和不可预测性而引人注目,例如pseudo-random编号生成器和硬件随机数字生成器。这项工作分析了可提取量的随机性的演变,并增加了希尔伯特空间维度,状态制备子空间或测量子空间中的一类半脱位独立量子RNG,其中界定状态的重叠是核心假设,是基于准备和测量方案的核心假设。我们进一步讨论了这些因素对复杂性的影响,并在最佳场景上得出结论。我们研究了定义各种输入(状态准备)和结果(测量)子空间的定义各种输入(状态准备)的通用情况,并讨论最佳场景以获得最大的熵。对几种输入设计进行了实验测试,并分析了其可能的结果布置。我们通过考虑设备的缺陷来评估他们的性能,尤其是检测器的后脉冲效果和黑暗计数。最后,我们证明了这种方法可以增强系统熵,从而导致更可提取的随机性。
虽然“量子”一词仅在过去十年中才在技术领域开始流行,但过去的许多技术已经依靠我们对量子世界的理解,从激光到MRI成像,电子晶体管和核能。最近量子变得如此受欢迎的原因是,研究人员在操纵单个量子颗粒(轻度光子,电子,原子)方面变得越来越好,以前是不可能的。这些进步使我们能够更明确地利用量子世界的独特和怪异特性。他们可以在传感,计算和通信等领域发动量子技术革命。什么是量子计算机?量子计算机的力量主要来自叠加原理。经典位只能处于0或1状态,而量子位(Qubit)可以以几种0和1状态组合存在。当一个人测量并观察量子位时,它将仅崩溃成其中一种组合。每种组合都有特定的概率发生时发生时发生的可能性。虽然在四个组合中只能存在两个经典位,但在观察之前,所有这些组合中都可以同时存在两个量子位。因此,这些量子位比经典位可以持有更多的信息,并且它们可以持有的信息量与每个附加量子相比成倍增长。二十个量子位已经可以同时容纳100万个值(2 20),而300量量子位可以存储与宇宙中的粒子一样多(2 300)。