经确认,IACS 油轮 CSR 中的焊缝尺寸基于所连接部件的总要求厚度。如果要求的总厚度发生变化,则相关焊喉厚度将相应增加和/或减少。但是,应注意,最小焊缝尺寸也适用,因此如果设计要求的总厚度减小(例如通过减小加强筋间距),如果焊缝尺寸受最小要求控制,则焊缝可能并不总是减小。关于焊缝中的腐蚀裕度,在服役检查期间通常不会测量焊缝本身,因此不为焊缝提供离散腐蚀裕度。油轮 CSR 中要求的焊缝尺寸是根据船级社现有的与总尺寸相关的规则焊接要求制定的,还包括增加油箱顶部附近的腐蚀区域,经验表明,相邻的镀层由于腐蚀需要增加裕度。
2000-2001 年,在太平洋西北部建造的几艘巡逻艇和双体渡轮上发现了 5083-H321 镀层结构开裂。实地调查和金相研究得出结论,开裂是应力腐蚀开裂 (SCC) 的结果。Mg 2 Al 3 相的选择性连续晶界沉淀的存在,导致晶间、剥落和应力腐蚀开裂,这是冶金加工不当的结果。1 30 年前就发现了同样的问题,并有充分的记录。2 2004 年为船用铝合金制定了新的 ASTM 标准 B928。其目的是防止这些故障再次发生。 B928 要求生产商证明其 –H321 和 –H116 状态的船用合金产品 (2) 2 符合抗晶间腐蚀 (IGC)、剥落和应力腐蚀开裂 (SCC) 性能,这些性能通过 ASTM G66 (ASSET)、ASTM G67 硝酸质量损失试验 (NAMLT) 和金相检验确定。请参阅 B928 第 9.2、9.3 和 9.4 段。 3
图 3 为在含有 HEDP 的亚硫酸盐金溶液中, 恒电流密度为 5 mA ∙ cm -2 , 沉积时间为 1 min、5 min、10 min 和 20 min 时镀层的形貌与外观(HAuCl 4 ∙ 4H 2 O 0.01 mol ∙ L -1 , Na 2 SO 3 0.24 mol ∙ L -1 , HEDP 0.05 mol ∙ L -1 , 添加剂 0.1 mL ∙ L -1 )。沉积时间 1 min 和 5 min 时镀层颗粒细小致密(图 3a、图 3b), 外观光亮(图 3f 上部)。沉积 10 min 时, 颗粒呈现金字塔形貌(图 3c)。当沉积时间延长至15和20分钟时,涂层形貌没有发生明显变化(图3d,图3e),涂层外观仍然保持暗亮状态(图3f下部)。当沉积20分钟时,涂层呈暗亮金色
2002 年,欧盟颁布了一项指令(欧盟指令 2002/95/EC),要求 2006 年 7 月 1 日后投放市场的新电气和电子设备及系统不得含有铅 (Pb) 或其他对环境有害的材料。铅被用作离散电气和电子元件(包括集成电路、半导体、电容器、电阻器和其他电子电路)的焊接表面镀层(例如锡/铅焊料合金),这些元件广泛用于飞机或飞机设备上。迄今为止,没有一种无铅合金可以完全替代过去 50 多年来在电子和电气行业广泛使用的锡铅 Sn-Pb 共晶合金。许多提议的替代材料的熔点高于当前的共晶 Sn-Pb,而一些低温材料将无法承受极端的航空航天和航空操作环境。无铅焊料和涂层可能会降低系统或子系统的可靠性。以下因素可能会影响安全性和系统性能:
• 行业标准 2 1/16” 安装直径 • 亮铬或黑黄铜边框 • 硅树脂阻尼空气芯运动,读数稳定,抗震。• 滚花安装螺母,安装方便。• 玻璃填充尼龙外壳耐腐蚀、抗震。• 防水镜片是玻璃,不是塑料,所以耐刮擦。• 镀层安装硬件可防止腐蚀。• 机械仪表使用精密滚花黄铜齿轮,使用寿命长。• 12 VDC NG 操作。有关 24 VDC NG 应用,请咨询工厂。• 包括安装硬件和灯具套件,带 12 VDC 灯。• 除英制/公制仪表外,白色指针是标准配置。• 英制/公制仪表具有红橙色指针和双刻度。• 明亮、美观的包装提高了产品在展示时的可见度。• 有关正极接地应用,请咨询工厂。
先前的研究表明,锂离子电池中容量褪色的主要原因是石墨电极处发生缓慢的侧面反应,这不可逆地消耗了锂库存。18-24这些副反应是由于石墨SEI的稳定性有限或保护效率而发生的;因此,对石墨SEI的研究是电池研究中最重要的领域之一。25 - 29同样,对锂金属阳极上SEI形成的研究对于高能锂金属阳极电池的发展至关重要,以及改善对锂镀层反应的理解,这些反应严重限制了石墨基锂离子电池的寿命。30-33然而,当前对这些复杂反应的理解受到限制,对于石墨和金属阳极的SEI反应机理和气体形成特性的差异知之甚少。在这项工作中,我们结合了操作数压力测量和在线电化学质谱法,以研究在含有石墨和金属电极的电池中进化和消耗的气体。通过比较锂半细胞中石墨的气体形成特性,在具有LifePo 4计数器电极的细胞中,我们证明了锂
绝缘产品规格指南简介 绝缘产品规格指南由国家绝缘协会技术信息委员会更新。本指南列出了与隔热行业相关的 ASTM、联邦和军事规格。它涵盖工业和商业机械绝缘以及建筑围护结构和防火绝缘。还包括相关的应用和装饰附件材料。一些政府建筑机构(总务管理局、住房和城市发展部、国防部、工程兵团等)发布了指定绝缘材料的规格或标准。本指南旨在以一般方式描述指定的规格和标准。应记住,本指南中列出的材料可能会发生变化,规格和标准本身也是如此。鼓励用户查看适用规格和/或标准的最新版本。本指南按类型(ASTM、联邦或军用)、编号和标题组织每个规格,并描述其范围。制造声称符合参考规格的产品的 NIA 准会员列在每个规格下方。不要依赖本指南来确定产品是否符合合同规范或获得采购订单或合同的批准。这些决定必须通过仔细检查合同规范、制造商的文献以及合同文件中提到的政府规范或标准的规定来做出。有关具体产品信息和规范合规性,请咨询特定制造商。订购信息要订购一份 ASTM 规范,请联系以下机构:订购部门 ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 电话:(610) 832-9585;传真 (610) 832-9555 www.astm.org 如需联邦和军事规范的副本,请使用公司信纸并发送至以下地址:700 Robbins Ave. Philadelphia, PA 19111-5094(处理时间需 8-10 个工作日) 可从 NIA 网站 www.insulation.org 下载本指南的纸质副本:NIA 516 Herndon Parkway., Suite D Herndon, VA 20170 电话:(703) 464-6422;传真:(703) 464-5896 www.insulation.org 本指南中可用标准的目录 A240/A240M 压力容器用耐热铬和铬镍不锈钢钢板、薄板和钢带 A653/A653M 采用热浸工艺镀锌(镀锌)或锌铁合金镀层(镀锌退火)钢板 A792/A792M 采用热浸工艺镀锌(镀锌)或锌铁合金镀层(镀锌退火)钢板55%铝锌合金热浸镀层 B209 铝及铝合金薄板和板材[公制] C195 矿物纤维隔热水泥 C196 膨胀或剥落蛭石隔热水泥 C208 纤维素纤维保温板 C449/C449M 矿物纤维水硬性隔热装饰水泥
4.1.6 可追溯性和同质性。除选项 D 外,所有设计谱系均有同质且可追溯至制造商单个晶圆的有源器件批次。扫描石英晶体可追溯至石英棒和高压釜批次的加工细节;但是,多个批次的未镀层晶体、底座和盖子可以组合成单个密封晶体制造批次。仅对于设计谱系 E 和 R,无源元件、晶体和材料可追溯至其制造批次。制造批次和日期代码信息应通过 TCXO 序列号记录每个组件和制造这些 TCXO 所用的所有材料。Microchip 定义的生产批次是所有已组装和制造为单个组的振荡器。具有单个批次日期代码的最大可交付数量为 100 个单位。超过 100 个单位的订单数量将以多个批次日期代码交付,交付间隔为 4 周。如果适用,每个生产批次将配备同质材料,然后将其分配到多个批次日期代码构建中以满足可交付订单数量。订购时,除非采购订单另有说明,否则将在生产批次中的第一个构建批次上执行 C 组检查、批次资格和/或 DPA。
• 大多数扭矩紧固接头不使用垫圈,因为使用垫圈会导致紧固过程中螺母和垫圈之间或垫圈和接头表面之间产生相对运动。这会改变摩擦半径,从而影响扭矩-张力关系。如果需要更大的轴承面,则可以使用法兰螺母或螺栓。如果要使用垫圈,与螺栓杆紧密贴合的硬垫圈可提供更低、更一致的摩擦,通常是首选。• 去除紧固件上通常存在的油膜会降低给定扭矩的张力,并可能导致紧固件在达到所需张力之前发生剪切。• 由石墨、二硫化钼和蜡配制的超级润滑剂可产生最小的摩擦。除非在指定的紧固扭矩中留有余地,否则诱导张力可能会过大,导致螺栓屈服和失效。但是,如果以可控的方式使用,这些润滑剂可以有效地降低扭矩,以产生所需的张力,这意味着可以使用较低容量的紧固工具。• 出于外观或耐腐蚀的原因,紧固件可能会镀层。这些处理会影响摩擦系数,从而影响扭矩与张力的关系。• 通常会故意在紧固件中引入摩擦,以减少因振动而松动的可能性。在确定正确的紧固扭矩时,必须考虑诸如锁紧螺母之类的装置。
双(氟磺酰基)酰亚胺阴离子 (FSI − )、AlCl 4 − 和 (BrCl) n − 已被研究作为石墨插层化合物 (GIC) 的插层剂。[3] 由于电池结构简单,DIB 已从 Li [4] 扩展到 Na、[5] K、[6] Mg、[7] Ca、[8] 和 Zn 离子 [9] 体系。与有机或离子液体电解质不同,具有高安全性和低成本特点的水系电解质近年来正在蓬勃发展。[3f,10] 尽管已经取得了重大进展,但 DIB 面临的关键挑战在于设备级的低能量密度。以前提高 DIB 能量密度的尝试主要依靠使用浓电解质 [6,11] 来降低非活性溶剂的重量比。然而,只有在超高浓度下才能动力学抑制正极侧的阳极腐蚀。当 DIB 充电过程中消耗掉大部分电解质时,稳定性问题仍然存在。金属阳极的镀层剥离效率也在很大程度上取决于浓缩电解质下形成的钝化界面。在之前的 DIB 原型中,总是需要过量的金属阳极和电解质。最近,开发了“无阳极”锂金属电池概念,使用非活性基质作为集流体,[12] 这比锂金属更安全、更方便,而且