摘要我们报告了单原子镍催化剂在难治性等离子硝酸钛(TIN)纳米材料上使用湿合成方法在可见光光照射下支持的沉积。锡纳米颗粒有效吸收可见光,以产生光激发的电子和孔。光激发电子减少镍前体,以将Ni原子沉积在锡纳米颗粒表面上。产生的热孔被甲醇清除。我们通过改变光强度,光照时间和金属前体浓度来研究锡纳米颗粒上的NI沉积。这些研究结合了光沉积法是由热电子驱动的,并帮助我们找到了单个原子沉积的最佳合成条件。我们使用高角度的环形暗场扫描透射电子显微镜(HAADF-STEM),能量分散X射线光谱(EDX)和X射线光电子光谱(XPS)表征了纳米催化剂。我们使用密度功能理论(DFT)计算来预测Ni原子在TIN上的有利沉积位点和聚集能。TIN的表面缺陷位点最有利于单镍原子沉积。有趣的是,锡天然表面氧化物层上的氧位点也与单个Ni原子表现出很强的结合。等离子体增强的合成方法可以促进单个原子催化剂的光沉积在具有质量特性的广泛金属载体上。
本研究调查了环氧树脂及其与Ni粘接接头吸水后的劣化行为。通过浸没试验评价吸水特性,通过湿热试验(THT)后的拉伸试验评价Ni/树脂界面的劣化行为。研究结果表明,环氧树脂的吸水行为遵循菲克第二定律,吸水后树脂的拉伸强度降低。Ni/树脂界面的拉伸强度因THT而有降低的趋势,主要断裂方式为界面断裂。此外,为了评价Ni/树脂界面的劣化寿命,对拉伸试验后的断裂面进行了傅里叶变换红外光谱分析,以确定吸水度(Dw)。根据以Dw的特定值定义的劣化寿命,从阿伦尼乌斯图计算出表观活化能。由于Ni/树脂界面的恶化而引起的表观活化能为11.5kJ/mol。
新兴的添加剂制造(AM)技术,直接的金属激光烧结(DML)是三维部分的逐层制造的复杂过程。通过DML,金属粉末散布在粉末床上,层薄,高达20μm。高能激光器(。200 w)聚焦在粉末上,并使用定义的光栅图案扫描表面。激光与粉末相互作用时,一些能量会反映并散布到周围环境中和粉末晶粒之间。剩下的入射能被吸收,从而在熔化温度T m上方迅速加热粉末,形成局部熔体池。随着激光的传递,温度由于辐射,对流和导电的热量损失而降低,环境,周围的粉末以及通过下面的构建板(图1)。最终,温度降低足够降低,以至于熔体池经过液体到固体相变并固化。通过DML的温度病史,特别是液体到固体的相位转移时间和熔体池冷却速率,是最终产物的微结构和强度的最重要因素。1
存储设施。TORONTO, February 12, 2025 - Canada Nickel Company Inc. (“ Canada Nickel ” or the “ Company ”) (TSXV: CNC) (OTCQX: CNIKF) is pleased to announce that it has been selected for funding of $3.4 million from the Government of Canada to support the development of Canada Nickel's proprietary In-Process Tailings (IPT) Carbonation process at the pilot plant level.IPT碳酸过程将镍采矿尾矿变成了永久的碳储存液,加拿大镍已为此过程提出了专利申请。该公司的旗舰克劳福德镍硫化物项目已被设计为加拿大最大的碳存储设施之一,并且是可持续采矿和碳管理领域的行业领导者。加拿大镍的IPT碳酸技术超镁铁质尾矿作为地质稳定的永久性CO 2存储解决方案。一旦运作,克劳福德镍硫化物项目就有可能在其高峰生产期内每年将每年150万吨CO 2隔离,并预计将在该项目的41年寿命中存储5400万吨,将其定位为加拿大最大的一员,也是安大略省最大的碳存储设施。加拿大镍公司首席执行官马克·塞尔比(Mark Selby)对加拿大政府的资金表示感谢,他说:“这项贡献证明了创新与协作的力量。在加拿大政府的支持下,我们将采矿尾矿变成了气候变化的解决方案,创造了环境管理和可持续资源开发的遗产。IPT碳酸化结合了Timmins Nickel区的多个Crawford-type沉积物的潜力,为安大略省东北部的全球独特零碳工业集群奠定了基础。”资金将通过加拿大自然资源的能源创新计划提供 - 碳捕获,利用和存储(CCUS)研究,开发和演示(RD&D)呼吁提出建议。该项目与呼叫的目标紧密保持一致,该项目是为了表征和开发安全的永久CO 2存储,并支持
本文作者谨代表巴伊兰大学纳米技术与先进材料研究所电化学组、BIU 能源与可持续发展中心和 INERC(以色列国家能源研究联盟)的同事,向 J. Mater. Chem. A 、其编辑和董事会成员祝贺这一重要期刊创刊 10 周年。在过去的十年中,该期刊为材料科学的广阔领域和材料研究界做出了巨大贡献。我们赞扬其有效、诚实的审查流程和在其中发表的高质量论文。我们很自豪能够在这本享有盛誉的期刊上发表许多论文,我们也很荣幸为这本期刊审阅了材料科学、能源相关领域和其他领域的许多高质量报告。我们在此向负责期刊、审查和出版流程的优秀团队表示感谢。我们很高兴将这篇论文提交给这个专题,并相信它能够引起材料科学、储能新材料、计算建模和电化学等跨学科社区的广泛兴趣。
诺里尔斯克镍业公司主张在自己的镍精炼工厂的基础上在Harjavalta建立电池回收集群,并总体上积极支持欧洲回收价值链的发展。对废旧电池中所含战略金属的再利用将有助于循环经济的成功发展,并显着减少电动汽车电池材料生产过程中的二氧化碳排放。芬兰可以通过在回收过程中使用可再生能源来进一步减少CO 2 排放。
摘要:尽管已经展示了各种微观和中观尺度的金属打印工艺,但打印基于合金与另一种合金/金属之间界面的功能设备(如热电偶、热电堆和热通量传感器)需要打印合金的工艺。此外,这些设备需要高质量的结晶合金才能发挥其可接受的功能。本文首次报道了从单一电解质中共电沉积打印单相固溶体纳米晶铜/镍 (Cu/Ni) 合金,该合金具有各种可控成分(Cu100Ni0 至 Cu19Ni81)。打印的合金是纳米晶体(<35 纳米),连续且致密,没有明显的孔隙度,具有出色的机械和磁性,无需任何后处理退火(如热处理)。此外,还展示了使用此工艺制造的功能热电偶。这种工艺不仅可用于制造功能设备,还可以通过打印用于材料表征的合金成分连续库来促进合金的基础研究。关键词:直写打印、受限电沉积、合金打印、铜/镍合金、共电沉积、机械性能、磁性■ 介绍
快速技术电池巡回单元的优势:•可用的NICD或VRLA / SLA电池选项•可用的24V,30V,50V和110V型号可用•站立和非固定负载版本•高环境温度版本•可用的高环境温度版本可用•最高70DEGC•最高70DEGC•可用的IP42 -IP 42-可用型号•我们可以构建较小的IP级•我们的零件•我们的配置••竞争•竞争•竞争•竞争范围•竞争•竞争•竞争•竞争•竞争•竞争•系统•经过验证的可靠设计•设计更改灵活性•CE标记•所有单元都进行了广泛的测试,包括在离开工厂之前进行治疗调查。•快速交货时间•标准1年保修•快速客户支持
图4。(𝑇)7 nm厚的ND 0.825 SR 0.175 NIO 2膜中的四个数据存放在SRTIO 3单晶体和全局数据拟合等式上。2(Fowlie等人[36]在其图S1中报告的原始数据,A [75])at𝑝= 5.0(𝑓𝑖𝑥𝑒𝑑)。绿球表示拟合𝜌(𝑇)数据的边界。青色表明𝑇𝑇,𝑧𝑒𝑟𝑜。推导的Debye温度为:𝑇= 313±1𝐾。适用于所有拟合𝜌→∞(等式2)。拟合的好处:(a)0.9992; (b)0.9995; (c)0.9981; (d)0.9997。95%置信带(粉红色阴影区域)的厚度比拟合线的宽度窄。