摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。
自古以来,在迅速发展的纳米技术领域中,人们就使用了多种纳米粒子。这些特征包括大小、形状、化学和物理特性。由于碳基纳米粒子尺寸小、表面积大,包括富勒烯、碳纳米管、石墨烯、氧化石墨烯和碳基量子点等,它们在包括生物医学应用在内的各个领域都引起了广泛关注。脂质双层形成称为脂质体的球形囊泡。磁共振成像 (MRI) 造影剂是氧化铁纳米粒子。这些材料具有卓越的机械、电、视觉和化学特性,非常适合药物和基因递送、生物成像和骨修复。然而,由于石棉的长宽比,人们开始担心潜在的石棉相关疾病。另一方面,陶瓷纳米粒子是日常生活中的常见材料,在骨修复、多尺度杂交和航空航天结构中发挥着至关重要的作用。这些纳米粒子可以通过模仿骨组织的纳米组成和纳米尺度特性来增强骨整合和骨骼发育,并增强骨传导和骨诱导能力。然而,陶瓷纳米粒子有可能产生氧化应激,这会导致网状内皮系统的刺激、心脏、肝脏和肺的细胞毒性以及附着细胞的毒性。此外,氧化应激、细胞损伤和基因毒性可能是由陶瓷纳米粒子产生的自由基引起的。金属纳米粒子表现出与分子系统相似的线性光学特性,但来自不同的物理过程。半导体纳米晶体 (NC) 由各种化合物制成,例如硅和锗。一妻多夫纳米粒子是大小约为 10 至 10000 纳米 (nm) 的粒子,可包含活性物质。它们可用于疫苗输送、基因治疗和用于治疗应用的聚合物纳米粒子(纳米药物)。
强制对流沸腾是一种有效的冷却技术,用于热载应用中的温度管理。由于对计算能力的不断增长的需求,微电子的快速发展在科学家和工程师面前设定了有效的微处理器的有效温度控制的任务[1,2]。此类应用的三维集成微处理器中的体积热通量已经达到10 kW/m 3 [2],并且此类处理器中的热通量分布可能非常不平衡。除此之外,已经开发了基于GAN晶体管的新一代电力电子产品,它具有高密度能量转换所需的特征,这将需要密集的冷却,[3]。在通道和微型通道中沸腾的流量已经积极研究[4-5]。例如,在[6]中,研究了具有均匀加热壁的微通道中的纵横比的影响,作者发现该比率对传热系数有很大的影响。在[7]中,研究了硅微通道水槽中的饱和水的饱和水,并研究了微通道的持续液压直径和不同的长宽比。已发现纵横比对传热特征有很大影响。然而,墙壁过热的关键问题,流动的固有不稳定以及在常规连续平行的微通道中的关键热通量值低,为在具有高热量磁通量的设备中实际应用的微通道散热器实际应用带来了严重的问题,[8]。在[9]中,研究了通道高度对传热的影响和具有不均匀加热(流量宽度大于加热器宽度)的平坦微型通道中的临界热通量。然而,尽管加热器与通道宽度之比的影响尚不清楚,尽管它可能对微型和微通道的沸腾传热效率产生重大影响。
摘要:异质性超导性发作是Cuprate和基于铁的家族的高-T C超级导管的常见现象。它是由从金属到零抗性状态的相当广泛的过渡表现出来的。通常,在这些强烈的各向异性材料中,超构型(SC)首先显示为孤立域。这会导致t c以上的各向异性过量电导率,并且传输测量值提供了有关样品内部深处的SC结构域结构的宝贵信息。在大量样品中,这种各向异性SC发作给出了SC晶粒的平均形状,而在薄样品中,这也表明SC晶粒的平均大小。在这项工作中,在各种厚度的FESE样品中,测量了层中的和内层的电阻率。为了测量层间电阻率,使用FIB制造了跨层的FESE MESA结构。随着样品厚度的降低,观察到超导过渡温度T C的显着增加:T C在厚度〜40 nm的微生物中从散装物质的8 K提高到12 K。我们应用了分析和数值计算来分析这些数据和早期数据,并发现了FESE中SC域的纵横比和大小与我们的电阻率和Diamamnetic响应测量相一致。我们提出了一种简单且相当准确的方法,用于估计各种小厚度样品中T C各向异性的SC域的长宽比。讨论了FESE中的nematic和超导域之间的关系。我们还将分析公式推广到异质各向异性超级导管中的电导率,以与两个具有相等体积分数的两个垂直方向的细长SC结构域的情况,对应于基于Fe的各种FE基超导体中的nematic结构域结构。
首先,我们来看看数字信号处理。传统上,航空电子和卫星电源应用与 28v 总线(或车载 14v)相关,而后者又在需要时转换为低压配电。由于控制系统和有效载荷的数字内容增加(包括可编程阵列和传感器的模拟数字 (ADC 或 DAC) 转换),该领域正在快速增长。新设计继续采用具有更高处理速度的 ASICS,要求用于去耦的多层陶瓷芯片电容器 (MLCC) 具有较低的寄生元件,即低等效串联电阻 (ESR) 和低等效串联电感 (ESL)。越接近核心 ASIC 或可编程阵列,ESL 的控制就越关键。由于电容器是 2 端设备,因此基本 ESL 特性来自部件的几何形状 - 两个端子有效地定义了信号的电流环路,部件越大,环路越大,因此 ESL 也越大。解决这个问题的基本方法是使用“反向几何”低电感芯片电容器 (LICC),其端接在侧面而不是部件的末端。在 2:1 长宽比部件(例如 1206 尺寸)中,使用反向几何版本 0612 将在相同电容/电压设计和相同空间占用的情况下将电感降低 2 倍(通常从 1nH 到 500pH)。通过使用较小轮廓的部件和较小的环路(0508 代替 0805、0306 代替 0603 等),仍然可以实现较低的电感,但这是以降低电容值为代价的 – 并且仍然要求在 ASIC 工作频率下保持电容。因此,为了实现更快的速度,需要新的组件设计,其中电感组件可以与电容组件分开。有三种方法可以实现这一点:通过电感消除、通过非常小的信号环路以及通过最小化与 PCB 接地平面的电感耦合。电感消除的一个很好的例子是数字间电容器 (IDC)。这是一种反向
与传统的 2D 计算系统相比,超密集 3D 集成电路(3D IC),例如单片 3D IC(图 1),可以为数据密集型应用带来巨大的能量延迟积(EDP)优势 [1,2]。为了实现这些优势,需要将多层逻辑和存储器(例如,逻辑和/或存储器设备的薄层,以及相关的信号/全局金属布线)以 3D 形式集成,并使用有限长宽比的后端制程(BEOL)层间过孔(ILV)建立超密集(例如,间距 ≤ 100 纳米)垂直连接 [3]。现有的 BEOL 布线结构已经在使用这种纳米级 ILV。3D IC 变得至关重要,因为工艺技术小型化的根本限制使得传统的缩放路径更加困难。但是,必须克服重大的热挑战才能在多个 3D 层上实现高速和高功率计算引擎 [4-5]。如果没有新技术,未来 3D IC 的上层最高温度将大大超过可靠运行所需的上限(例如 [6] 中的 125°C)。我们使用图 1 中的单片 3D IC 来了解 3D 层中的温升和热耗散(详细分析见第 III 部分)。图 1 中的 N 层中的每一层都包含一层高速、高功率硅逻辑器件(例如,计算引擎)和由铜布线和超低κ 层间电介质 (ILD) 组成的 BEOL 层(例如,用于信号布线)。各层通过超密集 ILV 电连接。在某些设计中,每层还存在硅存储器、存储器访问设备和额外的 BEOL。3D IC 由附加的散热器进行外部冷却,散热器将产生的所有热量以散热器比传热系数 h(W/m 2 /K)散发到环境中。最高温度 T j 取决于散热器、环境温度和 N 层的热特性。散热器创新(如 [7])只需散热器上 10°C 的温升(即 h= 10 6 W/m 2 /K)即可消除 1000 W/cm 2 的热量,尽管
从十八世纪开始,断口学就被广泛应用于研究金属材料断裂表面的宏观外观 [1],而从十九世纪末开始,断口学又广泛应用于研究脆性材料,例如陶瓷和玻璃 [2]。然而,模拟技术只适用于固态材料 [3,4]。裂纹发生后的断口形貌信息可用于确定裂纹起始区。本文介绍了在对不合格芯片进行故障分析时获得的一些结果。图 1 所示的结果包括微尺度断口学特征,例如扭曲纹 (th)、速度纹 (vh)、瓦尔纳线 (w)、条纹 (s) 和停止线 (a) [5]。施加在芯片上的驱动力可以是直接的,也可以是间接的。当驱动力直接接触芯片时,它通常与裂纹起始区有关,例如从芯片侧壁分支的裂纹、机械分离晶圆的效应、超声波引线键合的键合焊盘上的凹坑效应或由于芯片放置不当导致的芯片边缘脱落。当驱动力与芯片间接接触时,在树脂去封装之前对封装进行宏观分析对于观察封装上的划痕或压痕等机械特征至关重要。这对于防止对断裂机制的误解至关重要。本文的目的是展示去封装的方法和断口分析的应用,作为理解发光二极管 (LED) 芯片裂纹起源的新视角。如今的 LED 芯片的长宽比至少比硅集成电路 (IC) 小五倍。LED 芯片封装在杯状预制硅胶中以增强光反射,而不是使用带有平底 IC 的深色环氧树脂封装剂。用于分析硅 IC 芯片裂纹的无损技术是 X 射线显微镜和扫描声学显微镜 (SAM) [6,7]。LED 的小长宽比对 X 射线显微镜处理和寻找裂纹线是一个挑战,我们最不希望丢失客户退货样品。SAM 正在传输和检测反射声波;这在平面 IC 封装中效果很好
超越了ohnishi参数:将解离能与聚合物蚀刻相关联Stanfield Youngwon Lee *,Min Kyung Jang,Jae Yun Ahn,Jae Yun Ahn,Jung Jung June Lee和Jin Hong Park Dupont Electronics&Internalics&Internalics&Industrial,20 Samsung 1-Ro 5gil,Hwaseong-si,Gyeeegi-siea,gyeeeegi-do, *stanfield.lee@dupont.com随着光刻图案的大小继续减少,具有快速蚀刻速率和高蚀刻选择性的功能性子层对于维持良好的长宽比和促进成功的模式转移是必要的。因此,预测聚合物蚀刻速率的方法的研究和开发对于设计聚合物在光刻子层中的成功利用至关重要。从这些方法中,OHNISHI参数通常被称为聚合物在某些蚀刻条件下的易于易于。,尽管O.P.值可以是一个强大的预测工具,在某些单体的实现中发现了实际蚀刻率的差异。试图阐明导致这些变化的因素,计算了一系列具有已知蚀刻速率的聚合物的键解离能。与先前引用的研究结合使用,我们的初始发现概述了采用解离能作为OHNISHI参数的替代方案的优势。关键字:ohnishi参数,蚀刻速率,功能性子公司,债券解离能1。引言随着光刻术继续向较低波长的能源过渡,以满足对较小模式大小的需求[1-3],因此新的材料设计正在不断变化,以满足每一代的需求。然而,尽管每一代人的逝世经常导致不同的子层要求,但某些关键参数仍然坚定不移。其中一种是具有相对更快的蚀刻速率或更高蚀刻性的材料,而蚀刻性的选择性比构成光蛋白天(PR)层的材料。可以提出,随着光刻堆栈的大小不断缩小[4],蚀刻率不再是主要因素。的确,对有机单层的研究[5-10],薄无机子层[11-13],甚至没有有机子层[14]的研究。然而,诸如涂层均匀性,差的模式转移和粘附等问题以及有机抵抗和底层之间的兼容性问题阻碍了这些方法的广泛应用[15,16]。
纤维因其优异的拉伸性、透气性和高孔隙率而在诸多领域具有广泛的应用前景。人们已经开发出许多方法来使用各种材料来生产合成纤维,其中,静电纺丝是一种广泛使用且有效的生产微纳米级纤维(纤维直径范围从 2 纳米到几微米)的方法[5]。除静电纺丝外,大多数其他传统的纤维生产方法,如湿纺和干纺、拖曳纺丝、凝胶纺丝和三维 (3D) 打印,都仅依靠机械拉伸或剪切应力来拉伸和变细纤维射流;因此,它们通常很难在不导致纤维断裂的情况下生产出纤维直径小于 10 毫米的超薄纤维[6]。静电纺丝利用强静电力将聚合物溶液或熔体拉伸成细射流,最终形成微/纳米纤维沉积。这种现象最早在一个多世纪前被发现和描述 [ 7 ],但直到 20 世纪初,“静电纺丝”一词才正式提出 [ 8 ]。从那时起,关于这种用途广泛且简单的纤维生产技术的研究一直在显着增长 [ 9 ]。随着材料科学和纳米技术的最新发展,新材料已与静电纺丝技术相结合,例如导电材料、能量产生材料以及生物相容性和生物活性材料。利用这些新材料功能化的电纺微/纳米纤维不仅保留了超薄纤维的物理优点,例如高长宽比、柔韧性、方向性和高孔隙率,而且还开辟了新颖的纤维和纺织设备配置和应用。例如,压电聚合物的使用使一系列本质上灵活和透明的能量收集器和自供电传感器成为可能[10,11]。用聚合物和金属或陶瓷制成的复合材料纤维在新型传感和光电设备中显示出良好的应用潜力[12,13]。同时,这些新兴应用要求对电纺纤维的形貌和图案进行更精确、更方便和定制化的控制。因此,人们努力改进和调整静电纺丝装置和工作条件,并将纤维纺丝与其他先进加工技术(如 3D 打印和微流体)相结合。本章旨在全面描述静电纺丝的最新创新和技术进步。为了让不熟悉静电纺丝的读者有效地阅读本章,我们在开头简要介绍了静电纺丝的物理原理和基本装置设计,然后讨论了