量子混沌是十分重要的。它是孤立多体量子系统热化机制和本征态热化假设 (ETH) 有效性的基础[1-3],它解释了驱动系统的加热[4,5],它是多体局部化的主要障碍[6-9],它抑制了多体量子系统的长时间模拟[10],它可能导致量子信息的快速扰乱[11],并且它是可以观察到量子疤痕现象的区域[12-14]。对于具有适当半经典极限的系统,量子混沌是指在量子域中发现的特定属性,此时相应的经典系统在混合、对初始条件的敏感性和正的 Lyapunov 指数意义上是混沌的。对于自由度较少的系统(如台球和被踢转子),这种对应关系已经很明确,然而对于我们感兴趣的具有许多相互作用粒子的系统,由于半经典分析的挑战,这种对应关系仍然缺乏 [15]。因此,通常的方法是,如果一个给定系统显示出与全随机矩阵集合中发现的特征相似的相关特征值和特征态分量,则将其表示为混沌 [16-19]。最近对多体系统中量子混沌的研究大多针对有限密度的粒子进行,但出现了两个问题:量子混沌也能在零密度极限下发生吗?如果是这样,需要多少个相互作用的粒子才能使量子系统进入强混沌状态?这些问题对于冷原子和离子阱实验尤其重要,因为在这些实验中可以控制系统的粒子数量和大小。在参考文献中。 [20],通过逐步增加冷原子的数量,实验表明只需 4 个粒子即可形成费米海。仅使用四个相互作用的粒子也得到了量子混沌 [18] 和具有费米-狄拉克分布 [21-25] 的热化。最近,在含有 5 个粒子的系统中研究了热化 [26],并在仅含有 4 个粒子的系统中再次验证了量子混沌 [27-30],甚至可能在只有 3 个相互作用粒子的系统中 [31]。然而,目前尚不完全清楚其他混沌指标是否表现出类似的行为,以及是否可以通过引入长程相互作用来改变所获得的 4 个相互作用粒子的阈值。这些都是我们在本文中考虑的问题。我们重点研究自旋 1/2 链,其激发数 N 较少,幂律相互作用随自旋之间的距离衰减。这些系统类似于硬核玻色子或无自旋费米子的系统,因此这些情况下的粒子数对应于我们模型中的自旋激发 1 。我们发现,在具有短程耦合的系统中,当 N ≳ 4 时,无论系统规模有多大,都会出现强混沌。虽然大型链会改善统计数据,但不会改变我们的结果。我们表明,长程相互作用可促进向混沌的转变,并将阈值降低到仅 3 个激发,使得只有 3 个相互作用粒子的系统表现出与稠密极限下的大型相互作用系统类似的混沌特性。这对于离子阱实验尤其有意义,因为其中可以控制相互作用的范围 [ 32 , 33 ] ,以及探索长程相互作用系统的 Lieb-Robinson 界限的推广的研究 [ 32 – 35 ] 。
我们研究了宏观 PL 和 μPL(激发和检测面积 ≤ 5µm 2 )之间的差异。低温微光致发光 (μPL) 用于评估不同长度尺度上高电流密度 InGaAs/AlAs/InP 谐振隧道二极管 (RTD) 结构的结构完整性。薄且高应变的量子阱 (QW) 会受到阱和势垒厚度单层波动的影响,这会导致其能带轮廓发生随机波动。使用常见的光刻掩模减小激光光斑尺寸以达到典型的 RTD 台面尺寸(几平方微米),从而执行 μPL。我们观察到,对于 1μm 2 左右的光斑尺寸,PL 线形在晶圆上的多个点上表现出很大的差异。通过线形拟合研究了 PL 中的这些变化,并根据应变弛豫过程带来的长程无序变化进行了讨论。我们还强调这种 μPL 是一种强大且经济高效的 RTD 结构无损表征方法。
识别支持环境温度下复杂可调磁序的材料是开发新型磁性设备架构的基础。我们报告了 Mn 2 XY 四方逆 Heusler 合金的设计,该合金能够承载磁性反斯格明子,其稳定性对弹性应变敏感。我们首先构建一个通用磁哈密顿量,捕捉这些材料中可能出现的短程和长程磁序。该模型揭示了接近磁相边界所必需的关键磁相互作用组合,其中磁结构极易受到弹性应变等小扰动的影响。然后,我们通过计算搜索可以实现这些关键相互作用的四元 Mn 2 (X 1 , X 2 ) Y 合金,这些合金很可能在逆 Heusler 结构中合成。我们认为 Mn2Pt1-zXzGa 材料系列(其中 X = Au、Ir、Ni)是获取所有可能磁相的理想系统,具有几种可以通过机械方式驱动磁相变的关键组成。
6. 如果不进行拟议的更换,RSR 将在 2003-04 年左右达到使用寿命时退役。香港其他两座主要监视雷达目前提供 140 海里的短程和中程覆盖范围。它们将无法提供必要的长程主要雷达覆盖范围(高达 200 海里)和 24 小时备份。因此,航空交通管制员将失去一个检测飞机位置的重要工具。这将妨碍他们提供 ATC 服务以确保安全、有序和高效的空中交通流量的能力。对于没有应答器或应答器无法使用的飞机(因为这些飞机将无法被次要航线监视雷达检测到),并且在距离香港 140 至 200 海里的空域内(即在两座主要监视雷达之外但在现有 RSR 的覆盖范围内)飞行的飞机,情况将尤其严重。因此,及时更换 RSR 至关重要。
里德堡原子是处于主量子数 n 的高度激发态的原子,人们对其的研究已有一个多世纪 [1,2]。在过去二十年里,里德堡原子物理学,特别是在超低温下 [3-8],由于其“夸张”的特性,为一系列激动人心的发现做出了贡献。高度激发的价电子与原子核之间的巨大距离以及随之而来的松散结合,导致了巨大的电极化率以及与周围原子的强长程偶极-偶极和范德华 (vdW) 相互作用。由于原子间的 vdW 相互作用取决于它们的极化率(对于几乎与氢相似的里德堡原子,其尺度为 n7),因此可以证明 vdW 力的尺度为 n11。因此,使用 n 在 50–100 范围内的里德堡原子可以将相互作用能量提高 17 到 20 个数量级 [9]。
量子自旋液体 (QSL) 形成一种极不寻常的磁态,其中自旋高度相关且直至最低温度仍相干地波动,但没有对称性破缺,也没有形成任何静态长程有序磁性。这种有趣的现象不仅本身具有重大的基础意义,而且为量子计算和量子信息带来了希望。在不同类型的 QSL 中,精确可解的 Kitaev 模型备受关注,其中大多数候选材料(例如 RuCl 3 和 Na 2 IrO 3 )具有有效 S =1/2 自旋值。在这里,通过广泛的基于第一性原理的模拟,我们报告了对 Kitaev 物理和外延应变铬基单层(如 CrSiTe 3 )中可能的 Kitaev QSL 态的研究,这些单层具有 S =3/2 自旋值。因此,我们的研究将 Kitaev 物理学和 QSL 的研究范围扩展到 3 d 过渡金属化合物。
在本研究中,我们利用偏振相关角分辨光电子能谱 (ARPES) 研究了六方 MnTe (0001) 块体单晶的电子能带结构。样品通过混合化学计量量的细粉 Mn 和 Te 来制备,并在 10 -5 pa 的真空石英安瓿中密封。我们通过固相反应法生长 MnTe 单晶并将其切割成 (0001) 面。为了获得干净的表面,我们对样品进行了溅射和退火。我们使用 2kV 的束流能量进行溅射,退火温度为 330 摄氏度。通过反复的溅射和退火循环,我们最终得到了干净的表面。通过俄歇电子能谱检查表面的杂质,并通过尖锐的六方低能电子衍射 (LEED) 斑点确认了长程有序。偏振相关 ARPES 实验是在配备 ASTRAIOS 电子分析仪的 HiSOR BL-9A 上进行的。我们将光子能量设置为 40 eV,温度设置为 200K。入射光的偏振方向由波荡器磁铁配置控制。
由于长程相干性,驱动量子系统的纠缠特性可能与平衡情况不同。我们通过研究一个合适的介观传输玩具模型来证实这一观察结果:开放量子对称简单排除过程(QSSEP)。我们推导出稳定状态下不同子系统之间互信息的精确公式,并表明它满足体积定律。令人惊讶的是,QSSEP 纠缠特性仅取决于与其传输特性相关的数据,我们怀疑这种关系可能适用于更一般的介观系统。利用 QSSEP 的自由概率结构,我们通过开发一种新方法从所谓的局部自由累积量中确定随机矩阵子块的特征值谱来获得这些结果——这本身就是一个数学结果,在随机矩阵理论中具有潜在的应用。为了说明该方法,我们展示了如何从局部自由累积量计算满足本征态热化假设 (ETH) 的系统中可观测量的期望值。
量子信息处理需要能够相干且精确地控制和测量的量子比特 [1]。被电磁场捕获并保存在真空室中的原子离子线性链可以满足这些要求,并且已经成为一个令人兴奋且有前途的量子计算平台 [2-4]。量子比特可以在超精细基态或塞曼基态中编码,其中离子通过 Mølmer-Sørensen 方案受到自旋相关力 [5]。然后,虚拟声子在库仑力的作用下介导离子之间的自旋-自旋相互作用 [6]。这样,离子阱链成为自旋-自旋相互作用系统的量子模拟的天然平台 [7]。大量的研究兴趣集中在为量子模拟设计特定的哈密顿量 [8-12]。尤其独特的是 XY 自旋模型,它们的长程相互作用以 1 / r α 衰减,其中 α 是一个可调参数。该模型存在模型空间外的相干泄漏,特别是对于较小的 α 。在这里,我们展示了如何完全缓解这种相干误差,并提供了两个应用:最佳空间量子搜索和 O ( √
在扫描氦显微镜 (SHeM) 中演示了一种以微米级空间分辨率测量氦原子衍射的方法,并将其应用于研究氟化锂 (LiF) 晶体 (100) 平面上的微米级斑点。观察到的衍射峰的位置提供了局部晶格间距的精确测量,而紧密耦合散射计算和蒙特卡罗射线追踪模拟的组合则重现了衍射强度的主要变化。随后,通过在倒易空间中的不同点进行测量,衍射结果可用于增强图像对比度。结果为使用氦微衍射表征小尺度上精细或电子敏感材料的形态开辟了可能性。这包括许多在基础和技术上重要的样品,这些样品无法在传统的原子散射仪器中进行研究,例如小晶粒尺寸的剥离二维材料、多晶样品和其他不表现出长程有序的表面。