摘要:研究了基于原位形成的亚胺连接低聚物的各种坚固、结晶和多孔有机骨架。这些低聚物通过液-液界面反应通过协同的分子间氢键相互作用进行自组装。可溶性低聚物是具有多个未反应醛基的动力学产物,这些醛基充当氢键供体和受体,并引导所得低聚物组装成 3D 骨架。坚固的共价键和高度可逆的氢键的顺序形成增强了长程对称性并促进了大单晶的生成,其结构可通过单晶 X 射线衍射明确确定。独特的分级排列增加了亚胺键的空间位阻,从而阻止了水分子的攻击,大大提高了稳定性。骨架中的多个结合位点使得能够快速封存水中的微污染物。
在过去的 20 年里,神经技术取得了长足的进步。然而,我们距离实现这些技术的商业化还有很长的路要走,因为我们缺乏一个统一的框架来研究将硬件、软件和神经系统结合在一起的网络神经系统 (CNS)。动态系统在开发这些技术方面发挥着关键作用,因为它们可以捕捉大脑的不同方面并深入了解它们的功能。越来越多的证据表明,分数阶动态系统在神经系统建模方面具有优势,因为它们具有紧凑的表示形式和捕捉神经行为中表现出的长程记忆的准确性。在这篇简短的综述中,我们概述了分数阶 CNS,其中包括 CNS 背景下的分数阶系统。特别是,我们介绍了分析和综合分数阶 CNS 所需的基本定义,包括系统识别、状态估计和闭环控制。此外,我们还提供了一些 CNS 背景下的应用的说明,并提出了一些未来可能的研究方向。这三个领域的进步对于开发下一代 CNS 至关重要,最终将改善人们的生活质量。
物质的拓扑有序相逃避了朗道的对称破缺理论,其特点是各种有趣的特性,如长程纠缠和对局部扰动的内在稳健性。将它们扩展到周期性驱动系统会产生在热平衡中被禁止的奇异新现象。在这里,我们报告了对这种现象的迹象的观察——预热拓扑有序时间晶体——其中可编程超导量子位排列在方格上。通过用表面码哈密顿量周期性地驱动超导量子位,我们观察到离散时间平移对称破缺动力学,这种动力学仅表现在非局部逻辑算子的亚谐波时间响应中。我们进一步通过测量非零拓扑纠缠熵并研究其后续动力学,将观察到的动力学与底层拓扑序联系起来。我们的研究结果证明了使用嘈杂的中尺度量子处理器探索物质的奇异拓扑有序非平衡相的潜力。
标题:关联量子物质和量子信息 名字:Laurent 姓:Sanchez-Palencia 实验室:CPHT 电子邮件:lsp@cpht.polytechnique.fr 网页:https://www.cpht.polytechnique.fr/cpht/uquantmat/ 研究领域:量子科学与技术(初级)、凝聚态物理学 方法:量子场论、量子信息方法、量子蒙特卡罗、张量网络方法 博士课程主题:该小组对关联量子物质的动力学进行理论研究,涉及超冷原子、量子光学和量子模拟。我们的工作旨在表征物质的新量子相和量子相变,了解量子传输以及关联量子物质中的非平衡动力学。我们还对量子信息论在凝聚态中的应用感兴趣。为此,我们开发了分析和数值方法。博士课程研究员将参与正在进行的项目之一,该项目要么是奇异量子材料的表征和量子模拟,要么是将量子信息方法应用于关联量子模型。下图说明了具有长程相互作用的关联量子系统中的信息传播。有关更多信息,请查看我们的研究网页 https://www.cpht.polytechnique.fr/cpht/uquantmat/ !
摘要 随着量子系统平台的快速发展,噪声量子态的多体量子态重建问题成为一个重要挑战。人们对使用生成神经网络模型来解决量子态重建问题的兴趣日益浓厚。在这里,我们提出了“基于注意力的量子断层扫描”(AQT),这是一种使用基于注意力机制的生成网络进行量子态重建的方法,它可以学习噪声量子态的混合态密度矩阵。AQT 基于 Vaswani 等人(2017 NIPS)在“注意力就是你所需要的一切”中提出的模型,该模型旨在学习自然语言句子中的长程相关性,从而超越以前的自然语言处理(NLP)模型。我们不仅证明 AQT 在相同任务上的表现优于早期基于神经网络的量子态重建,而且证明 AQT 可以准确地重建与 IBMQ 量子计算机中实验实现的噪声量子态相关的密度矩阵。我们推测 AQT 的成功源于它能够对整个量子系统中的量子纠缠进行建模,就像 NLP 的注意力模型能够捕捉句子中单词之间的相关性一样。
在本文中,我们的主要目标是应用参数估计理论技术和 Fisher 信息形式的量子计量概念来研究马尔可夫近似下某些物理量在两纠缠量子比特系统的开放量子动力学中的作用。存在各种表征此类系统的物理参数,但不能将其视为任何量子力学可观测量。必须进行详细的参数估计分析以确定此类量的物理一致参数空间。我们应用经典 Fisher 信息 (CFI) 和量子 Fisher 信息 (QFI) 来正确估计这些参数,这些参数在描述开放量子系统的非平衡和长距离量子纠缠现象中发挥着重要作用。与经典参数估计理论相比,量子计量发挥着双重优势,提高了参数估计的精度和准确度。此外,本文提出了一种量子计量方面的新途径,它超越了经典参数估计。我们还提出了一个有趣的结果,即由于早期时间尺度上的长程量子纠缠而导致的后期时间尺度上非平衡特征的复活,并根据早期时间尺度上贝尔不等式违反导致的非局域性提供了物理解释。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
聚合物和小分子混合薄膜在有机电子器件,尤其是有机太阳能电池中具有极高的应用价值。普通 P3HT 和最先进的 Y 系列非富勒烯受体 (NFAs) 的混合物具有很高的可混溶性,可以抑制相分离和聚集,从而抑制电荷分离和传输。在最近的一项研究中,引入了电流诱导掺杂 (CID),这是一种精确控制溶液中聚 (3-己基噻吩) (P3HT) 聚集的方法。本文使用溶液中高度有序的预聚集来控制纯膜和与 Y12 (BTP-4F-12) 的混合物中的 P3HT 聚集。这使得 P3HT 有机场效应晶体管 (OFET) 器件中的空穴迁移率提高了 25 倍,并且在 Y12 存在下 P3HT 聚集体质量可以在大范围内可调。同时,特别是 Y12 长程有序性因 P3HT 聚集性的增加而受到严重抑制。然而,溶剂蒸汽退火 (SVA) 可导致 Y12 有序性极高,Y12 晶体取向发生变化,P3HT 聚集性进一步改善。因此,仅通过改变加工参数而不改变材料系统的组成,就可以在最终薄膜中获得两种材料不同程度的聚集。
所有智能都是集体智能,因为它是由必须与系统级目标保持一致的部分组成的。因此,了解通过对齐的部分促进或限制问题空间导航的动态将影响生命科学和工程学的许多领域。为此,考虑一个位于平面图顶点上的系统,其成对交互由图的边缘规定。这样的系统有时可以表现出长程有序,将宏观行为的一个阶段与另一个阶段区分开来。在相互作用系统的网络中,我们可以将自发排序视为一种自组织形式,模拟神经和基础认知形式。在这里,我们讨论了有序相存在的图拓扑必要条件,着眼于寻找具有局部相互作用的系统维持有序目标状态的能力的限制。通过研究三个模型系统(Potts 模型、自回归模型和分层网络)中域壁形成下自由能的缩放,我们展示了图上相互作用的组合如何阻止或允许自发排序。作为一个应用,我们能够分析为什么像生物学中普遍存在的多尺度系统能够组织成复杂的模式,而基本的语言模型则受到长序列输出的挑战。
分数量子霍尔 (FQH) 相是由于强电子相互作用而出现的,其特征是任意子准粒子,每个准粒子都具有独特的拓扑参数、分数电荷和统计数据。相反,整数量子霍尔 (IQH) 效应可以从非相互作用电子的能带拓扑中理解。我们报告了所有 FQH 和 IQH 跃迁中临界行为的令人惊讶的超普适性。与预期的状态相关临界指数相反,我们的研究结果表明,对于分数和整数量子霍尔跃迁,临界标度指数 κ = 0.41 ± 0.02 和局域长度指数 γ = 2.4 ± 0.2 相同。从中,我们提取了动力学指数 z ≈ 1 的值。我们已经在超高迁移率三层石墨烯器件中实现了这一点,其中金属屏蔽层靠近传导通道。在之前的研究中,由于在传统半导体异质结构中 κ 的测量值存在显著的样本间差异,而长程关联无序占主导地位,因此在各种量子霍尔相变中观察到的这些全局临界指数被掩盖了。我们表明,稳健的标度指数在短程无序关联的极限下是有效的。