随着集成电路规模的不断缩小,静电放电 (ESD) 已成为影响集成电路可靠性的关键因素。[1] 目前,超过三分之一的芯片损坏与 ESD 有关,迫切需要可靠有效的 ESD 防护设计。ESD 防护设计存在许多难点,例如在期望高稳健性和小尺寸的同时满足设计窗口。传统的 ESD 防护器件例如 GGNMOS、二极管、NPN 和 RC 电源钳位通常占用大量的芯片面积。[2] 为了减轻集成电路中每个 I/O 引脚的 ESD 防护对硅片的消耗,可控硅 (SCR) 因其最高的稳健性和最小的尺寸成为各种 ESD 防护器件中最具吸引力的选择。[3] 然而,SCR 固有的再生反馈机制会导致深度回跳和相对较小的保持电压,造成闩锁效应。 [4] 另外,随着保持电压的提高,ESD器件的瞬态功耗必然增大,导致ESD故障电流(It2)急剧下降。因此,在保持足够高的故障电流的同时提高保持电压是极其困难的。人们致力于提高SCR的保持电压。[5-8] 最简单的方案是扩大SCR阳极和阴极之间的距离,[5] 但这种方法效率低,不足以实现闩锁效应。
研究课题的相关性 当前,基于“互补金属氧化物半导体”(CMOS)技术的元件库由于其功能性强、速度快、能耗低等特点,在计算技术和控制系统的电子设备中占据主导地位。在现代 CMOS 微电路中,一个特征是闩锁效应或晶闸管效应 (TE),它在暴露于天然或人工来源的电离辐射时发生。由于制造具有 n 型和 p 型通道的紧密间距 MOSFET 的工艺过程的特殊性,在这些微电路中形成了寄生 pnpn 结构,在正常条件下不会影响产品的性能。当这种寄生pnpn结构受到外界影响而导通时,就会发生晶闸管效应,导致电流消耗不可逆增加,只能通过重置电源才能消除。除了故障之外,大电流的流动还可能导致灾难性的故障(CF)。 TE 的发生水平通常决定了 CMOS 微电路的抗辐射能力。