图1:电池材料中探索的相关尺度和配置的示意图。用灰色箭头,即密度功能理论(DFT)和分子动力学(MD)模拟来指示用于计算各个长度尺度中离子传输特性的方法。用于直接探测离子运输的实验技术还与相应的长度尺度对齐。6,该图显示了从原子到中尺度到中尺度的各种尺度范围,以及在电池中发生的相应配置。以这种方式研究电池材料将导致提高未来电池的性能特征。
脑冲程是一个灾难性事件,可能会损害人体的各种器官,包括视觉系统。视觉的电生理学是一种诊断技术,用于评估视觉系统的不同病理状况,主要是视觉途径和视网膜。电视图(ERG),电视学(EOG)和视觉诱发电位(VEP)在该领域通常使用电生理技术。Abdolalizadeh等。(2022)进行了一项研究,以研究使用ERG对毒药对患者的潜在影响。该研究包括20名参与者,由十名男性和十名女性组成,年龄在15至30岁之间。这些发现揭示了这些患者的视网膜变化,这些变化是通过测量ERG的振幅(特别是B波峰)诊断的[1]。同一研究小组还检查了使用EOG接受抗癫痫药物治疗的患者的视网膜色素上皮(RPE)。他们使用了同一组患者并观察到病理变化
手稿于2023年6月19日收到;修订于2023年6月26日; 2023年6月27日接受。出版日期; 2023年6月28日;当前版本的日期2023年7月18日。这项工作得到了美国能源部(Los Alamos报告编号LA-ur-22-32994)的部分支持,合同89233218CNA000001。根据20190043dr奖,洛斯阿拉莫斯国家实验室的实验室指导研究与开发计划(LDRD)计划的支持。Reeju Pokharel的工作得到了Grant Doe-NNSA的能源部国家核安全部门的动态材料物业运动的支持。Daniel J. Rutstrom的工作得到了DOE-NNSA的部分支持,该公司通过核科学和安全联盟颁发的DE-NA-0003 180奖和DE-NA-0003996奖和核能办公室,核能办公室,综合大学计划研究生奖学金。C. L. Morris和Mariya Zhuravleva的工作得到了田纳西大学的核科学和安全财团的支持,该联盟颁发了DE-NA-0003 180奖和DE-NA-0003996奖。Anton S. tremsin的工作得到了美国能源/NNSA/DNN研发部的部分支持,部分以及劳伦斯·伯克利国家实验室的一部分是根据合同AC02-05CH11231所支持的。本文的较早版本是在第16届闪烁材料及其应用国际会议的特刊(SCINT22),9月19日至23日,2022年,美国新墨西哥州圣达菲[doi:10.48550/arxiv.2212.10322]。(通讯作者:Zhehui Wang。)数字对象标识符10.1109/tns.2023.3290826Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。 Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > > >Christotoge Dujardin与LumièreMatièreInstitut,UMR5306,CNRS,CNRS,UniverséClaudeBernard Lyon1,69622法国Villebanne,法国(电子邮件:christophhe.dujardin@.fr)。Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。 Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > > >Paul Lecoq是瑞士CH-1211 Geneva的欧洲核研究组织(电子邮件:Paul.lecoq@cern.ch)。Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。 Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; > >Wei Liu和Daniel G. Robertson在AZ 85054的May Clinic(电子邮件:liu.wei@mayoyo.edu; robertson.daniel@mayo.edu)。Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu; >Charles L. Melcher,Daniel J. Rutstrom和Mariya Zhuravleva与材料科学与工程系一起,田纳西州诺克斯维尔,田纳西州诺克斯维尔大学,美国田纳西州37996(电子邮件:cmelcher@cmelcher@utk.edu; drk.edu; drk.edu; drk.edu;Mar Nikl曾在捷克科学学院的物理研究所,捷克共和国普拉格16200号(电子邮件:nikl@fzu.cz)。Anton S. Tremsin与加利福尼亚州伯克利分校的太空科学实验室一起,美国加利福尼亚州94720美国(电子邮件:astr@berkeley.edu)。本文中一个或多个数字的颜色版本可从https://doi.org/10.1109/tns.2023.3
图5:两个过渡(1 a 1g→1 t 1u和1 a 1g→1 cbm)的CAS-DEM和NEVPT2-DEM激发能的外推到超级电池的非插入极限(a)原始2×2×2,(b)原始3×3×2×2×2×2×2×2×2×2×2×2× 4。实心正方形(圆圈)表示t 1u(CBM)的单元激发的DMET数据点,而空心正方形和圆圈表示相应的外推Vees。红色(紫色)颜色象征CAS-DMET(NEVPT2-DMET)。
1。患有1型糖尿病的人或血液透析和胰岛素治疗中的任何形式的糖尿病患者,在上述任何一种中,在临床上都需要每天进行密集的监测> 8次,如过去3个月或与与胰岛素治疗上与胰岛素治疗相关的糖尿病相关的仪表下载/审查中所证明的。患有1型糖尿病的孕妇 - 总计12个月,包括分娩后。3。患有1型糖尿病的人由于残疾而无法定期自我监测血糖,他们要求护理人员支持葡萄糖监测和胰岛素管理。4。患有1型糖尿病的人,专家糖尿病MDT确定具有职业(例如在不充分的卫生条件下工作以安全地促进手指测试)或社会心理状况,这些情况需要进行6个月的LIBRE试验,并提供适当的辅助支持。5。先前使用1型糖尿病的Flash葡萄糖监视器的自筹资金,在该糖尿病中,对糖尿病的临床责任的人满意,他们的临床历史表明,在开始使用Flash Glucose Monumoniping之前,他们会满足其中一个或多个这些标准,并且在2019年4月之前就已经有了这些标准,并且在Hbabba1c中表现出了改善。6。对于患有1型糖尿病和复发性严重低血糖或对低血糖的意识障碍的人,NICE表明,持续的葡萄糖监测是标准的。 7。 8。,NICE表明,持续的葡萄糖监测是标准的。7。8。其他具有良好指导或良好支持的基于证据的替代方法是泵疗法,心理支持,结构化教育,胰岛移植和整个胰腺移植。但是,如果患有糖尿病患者及其临床医生认为闪光葡萄糖监测系统将更适合个人的特定情况,那么可以考虑。患有1型糖尿病或胰岛素治疗的2型糖尿病的人患有学习障碍并记录在GP学习障碍登记册上。正在接受胰岛素治疗但没有1型糖尿病的孕妇(总计12个月的传感器(包括递送后期)),如果有:
总结重组词素3A(SEMA3A)对具有异丙肾上腺素(ISP)诱导的心力衰竭的小鼠心肌重塑的影响。C57BL/6J小鼠腹膜内接收的ISP(480 mg/kg/day,ISP组; n = 24)或盐水(对照组; n = 31),持续14天。在第7天和第11天静脉内接受了0.5 mg/kg SEMA3A(ISP+SEMA3A组),接受了0.5 mg/kg SEMA3A。在ISP治疗后激活了交感神经系统,但在SEMA3A给药后降低了交感神经系统。在ISP组中观察到的心肌组织纤维化大于控制组比控制组更大。但是,ISP+SEMA3A和对照组之间的纤维化并没有显着差异。裂缝缩短比对照组低,并在ISP+SEMA3A组中恢复(对照,53±8%; ISP,37±7%; ISP+SEMA3A,48±3%; 48±3%; P <0.05)。单相势势持续时间延长(MAPD 20),但这在SEMA3A给药时逆转(对照,29±3 msP; ISP,35±6 ms; ISP+Sema3a,29±3 ms; P <0.05)。QPCR显示ISP组的KV4.3,KCHIP2和SERCA2下调以及ISP+SEMA3A组的上调;但是,蛋白质印迹显示仅针对KV4.3(p <0.05)的变化类似。 静脉注射SEMA3A可以通过抑制心肌的交感神经并减少心肌组织损伤来维持心肌收缩性,此外还可以通过kv4.3恢复MAPD。QPCR显示ISP组的KV4.3,KCHIP2和SERCA2下调以及ISP+SEMA3A组的上调;但是,蛋白质印迹显示仅针对KV4.3(p <0.05)的变化类似。静脉注射SEMA3A可以通过抑制心肌的交感神经并减少心肌组织损伤来维持心肌收缩性,此外还可以通过kv4.3恢复MAPD。(INT心脏J 2023; 64:453-461)关键词:交感神经系统,收缩功能,钾通道,心脏重塑
抽象目标闪光葡萄糖监测针对T1糖尿病患者避免频繁的疼痛手指测试,从而有可能提高葡萄糖自我监测的频率。我们的研究旨在探索使用Freestyle Libre传感器及其父母的年轻人的经历,并确定对国家卫生服务(NHS)员工的收益和挑战。参加T1糖尿病的年轻人,他们的父母和医疗保健专业人员在2月至2021年12月之间接受了采访。参与者是通过社交媒体和NHS糖尿病诊所员工招募的。设计半结构化访谈是在线进行的,并使用主题方法进行了分析。员工主题被映射到标准化过程理论(NPT)构建体中。结果接受了34名参与者:10名年轻人,14位父母和10位医疗保健专业人员。年轻人报告说,自改为闪光葡萄糖监测,增加信心和独立性以管理自己的状况以来,生活要容易得多。父母的生活质量得到了改善,他们赞赏获得实时数据的访问。使用NPT概念来了解如何将技术整合到常规护理中被证明有用;卫生专业人员对闪光葡萄糖监测非常热情,并应对额外的数据负载,以促进诊所访问和诊所访问之间更量身定制的患者支持。医疗团队似乎致力于提供改进的技术,承认他们吸收提供专家建议所需的新信息的挑战。总结这项技术使年轻人及其父母更能完全理解糖尿病。对在诊所任命之间调整自己的护理感到更有信心;并在诊所提供了改进的互动体验。
摘要 — 可再生能源系统继续成为能源行业增长最快的领域之一。本文重点介绍储能技术在直流 (dc) 电弧条件下的表现。由于可再生能源系统的快速普及以及缺乏正式的直流等效计算指南(如交流 (ac) 系统的 IEEE 1584),在计算直流系统的弧闪 (AF) 入射能量 (IE) 时,必须依赖不同研究人员提出的不同方程和模型。本文讨论了储能系统在电弧条件下的行为,并介绍了可用方法估计直流弧闪入射能量的结果。本文对所提出的弧闪入射能量计算方法与可用的实验室测试进行了比较分析。解释了各种类型的电池在短路 (SC) 和电弧条件下可能产生的影响。其中包括所提出的计算方法模拟结果与实验室直流电弧测试测量的比较。
这项工作是Argonne国家实验室(ANL),劳伦斯·伯克利国家实验室(LBNL),国家可再生能源实验室(NREL),橡树岭国家实验室(ORNL),西北太平洋国家实验室(Oak Ridge National Laboratory),西北国家实验室(PNNL),美国桑迪亚国家实验室的国家实验室(NREL)。 div>uu div>合同号HSFE02-20-IRWA-0011。 div>资金由美国联邦急诊室提供。uu div>在能源部网络的动员办公室技术管理下进行。 div>此处表达的意见不一定代表能源部,FEM或美国政府的意见。uu div>美国政府保留非排他性,有偿,不可撤销和世界许可,以出版或复制这项工作的已发表形式,或者允许其他人出于美国政府的目的。
石墨烯已被证明是复合材料的特殊增强添加剂,但其合成的高成本在很大程度上阻止了其在工业规模上的增加。Flash Joule加热提供了一种快速的,批量的方法,用于从煤炭材料(例如冶金可乐(MC))合成石墨烯,进入冶金焦源浅灰灰石墨烯(MCFG)。在这里,这项工作研究了比文献中先前报道的纳米纤维含量含量更高的石墨烯 - 环氧复合材料的特性。具有20至50 wt%的MCFG的复合材料。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。 在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。在MCFG的1:3比例时:DGEBA,韧性增加了496%。最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。