摘要 — 可再生能源系统继续成为能源行业增长最快的领域之一。本文重点介绍储能技术在直流 (dc) 电弧条件下的表现。由于可再生能源系统的快速普及以及缺乏正式的直流等效计算指南(如交流 (ac) 系统的 IEEE 1584),在计算直流系统的弧闪 (AF) 入射能量 (IE) 时,必须依赖不同研究人员提出的不同方程和模型。本文讨论了储能系统在电弧条件下的行为,并介绍了可用方法估计直流弧闪入射能量的结果。本文对所提出的弧闪入射能量计算方法与可用的实验室测试进行了比较分析。解释了各种类型的电池在短路 (SC) 和电弧条件下可能产生的影响。其中包括所提出的计算方法模拟结果与实验室直流电弧测试测量的比较。
摘要:将有机半导体聚合物与生物学物质有效接口的物质特性对齐对于它们在生物电子设备中的使用至关重要。合成修饰和高级加工技术通常被用于促进细胞粘附和生长。在这项研究中,我们将UV-ozone(UVO)处理作为修改PDPP3T膜的简单替代方法。暴露于UVO会增加半导体表面的极性,如接触角和XPS分析所证实。在优化时间(t≥30s)下及以上的表面处理导致了施旺细胞的生长增强,其行为与标准组织培养塑料(TCP)相当。同时,长时间的暴露开始引起聚合物的光学特性的重大变化,逐渐闪入光漂白导致半导体行为的降低至30 s以上。使用电阻抗光谱测试了紫外线处理的PDPP3T的最佳生物结合特性,该技术在半导体聚合物对支持细胞生存力和增殖方面的有效性进行了使用。这项工作证明了更容易将共轭聚合物与生物环境整合在一起的潜力,从而扩大了探索在存在生物细胞中离子扩散与半导体电动性之间相互作用的机会。