结果:在头部运动姿势图中,灵敏度(67% 至 74%)和特异性(65% 至 71%)均有所改善。在 CTSIB-M 测试中,两种方法的组内相关系数均为 0.9。在泡沫测试(试验编号 3 和 4)中,尤其是闭眼泡沫测试(试验编号 4 - 灵敏度 86.4%,特异性 87.7%)的平均角速度在两次检查中存在最大差异。分析了两项功能测试:换座位测试和 360 度旋转测试。在前者中,研究来自 6 个传感器的结果 - 对于跌倒/非跌倒组分类,86% 的真阳性和 73% 的真阴性。第二项测试区分前庭功能障碍者和健康人。可以用 1 个传感器(灵敏度 80%)和 6 个传感器(灵敏度 86%,特异性 84%)进行分析。目前,MEDIPOST设备处于开发和认证阶段。
摘要:新兴研究报告称,功能性大脑网络会随着年龄的增长而发生变化。图论用于了解与年龄相关的大脑行为和功能差异,并使用脑电图 (EEG) 检查区域之间的功能连接。正常衰老对工作记忆 (WM) 状态下的功能网络和区域间同步的影响尚不清楚。在本研究中,我们应用图论来研究衰老对静息状态下网络拓扑的影响以及在执行视觉 WM 任务期间对衰老 EEG 信号进行分类。我们记录了 20 名健康中年人和 20 名健康老年受试者睁眼、闭眼和执行视觉 WM 任务时的脑电图。EEG 信号用于构建功能网络;节点由 EEG 电极表示;边表示功能连接。计算了包括全局效率、局部效率、聚类系数、特征路径长度、节点强度、节点中介中心性和同配性的图论矩阵来分析网络。我们应用了 K 近邻 (KNN)、支持向量机 (SVM) 和随机森林 (RF) 三个分类器对两组进行分类。分析显示老年组的网络拓扑特征显著减少。在睁眼、闭眼和视觉 WM 任务状态下,老年组的局部效率、全局效率和聚类系数显著降低。KNN 在视觉 WM 任务中实现了 98.89% 的最高准确率,并且比其他分类器表现出更好的分类性能。我们对功能网络连接和拓扑特征的分析可以用作探索人类大脑正常与年龄相关的变化的适当技术。
我们使用顺序分析和空间置换熵来区分眼睛睁开和闭眼的静息脑状态。为此,我们分析了来自109名健康受试者的64个电极记录的脑电图数据,在两个一分钟的基线运行下:一只眼睛睁开,另一个闭着眼睛。我们使用空间序数分析来区分这些状态,其中评估了置换熵,考虑到每次时电极的空间分布。我们分析了仅考虑Alpha波段频率(8 - 12 Hz)的原始和后处理数据,这对于大脑中的静息状态很重要。我们得出的结论是,空间序数分析捕获了有关不同电极中时间序列之间相关性的信息。这允许在原始数据和过滤数据中闭上眼睛和眼睛打开静止状态。过滤数据仅放大状态之间的区别。重要的是,我们的方法不需要EEG信号预处理,这对于实时应用来说是一个优势,例如大脑计算机接口。
本研究的目的是调查脑电图静息状态连接是否与智力相关。165 名参与者参加了这项研究。记录了每位参与者 6 分钟的闭眼脑电图静息状态。分别计算了两个完善的同步测量 [加权相位滞后指数 (wPLI) 和虚相干性 (iMCOH)] 以及传感器和源脑电图空间的图论连接指标。使用瑞文渐进矩阵测量非语言智力。根据神经效率假设,alpha 波段范围内的大脑网络路径长度特征(平均和特征路径长度、直径和接近中心性)与传感器空间的非语言智力显着相关,但与源空间无关。根据我们的结果,非语言智力测量的差异主要可以通过从包含节点之间弱连接和强连接的网络构建的图形指标来解释。
每天发生的重大道路交通事故数量在增加,其中大多数归咎于驾驶员的过错。根据美国的一项调查,据报道,2016 年发生了超过 30 起大型道路交通事故,造成超过 3 人严重受伤。最有趣的问题是,在这项调查中,有 70% 的事故是由于疲劳驾驶造成的。该项目的目标是建立一个困倦检测系统,该系统可以检测到一个人的眼睛闭了几秒钟或一个人打哈欠。当检测到困倦时,该系统会提醒驾驶员。任何人际关系中都存在情绪。面部表情、对话、手势甚至态度都可以用来描绘这些感受。情绪识别最明显、信息最丰富的选择也是人脸。人脸更容易收集。该项目的主要贡献是睡意检测和警告,它基于人的睁眼或闭眼。
驾驶行为是日常生活中的重要部分,随着时间的推移,道路上的车辆数量稳步增加。技术进步的出现催生了多种检测驾驶员状态的方法。疲劳、精神紧张、睡眠不足、单调乏味或饮酒等各种因素都可能导致困倦状态。检测眼球运动(闭眼/睁眼)的方法利用一种基于行为的方法,即深度学习。该技术涉及使用描述符来分析眼部图像并提取驾驶车辆内不同个体的组织特征 [1]。从描述人工智能 (AI) 驱动汽车运行的影片中收集眼部特征,然后在准备过程中用于识别显着的相似之处 [2]。从眼部图像中提取显着特征的过程包括将图像分割成更小的部分,然后通过利用深度学习技术将它们排列成统一的特征向量 [3-6]。
大脑功能默认模式的概念源于一种集中需求,即解释当控制状态为被动视觉注视或闭眼休息时功能性神经影像数据中出现的活动减少。这个问题尤其引人注目,因为这些活动减少在各种任务条件下都表现出惊人的一致性。使用 PET,我们确定这些活动减少不是由静息状态下的激活引起的。因此,它们的存在意味着默认模式的存在。虽然引发这种分析的独特大脑区域群被称为默认系统,但大脑的所有区域都具有高水平的有组织的默认功能活动。最重要的是,这项工作引起了人们对内在功能活动在评估大脑行为关系中的重要性的关注。© 2007 Elsevier Inc. 保留所有权利。
本文介绍了一种便捷快速的低成本、弹簧式干式脑电图 (EEG) 电极与研究级传感器盖的集成,以确保电极根据 5% 系统定位。在心理学和神经科学以外的领域,如工程学,对大脑活动的测量越来越感兴趣。人为错误通常是由于注意力不集中、无法完全理解后果或界面设计不足而发生的。需要有效的设计解决方案来结合和识别人类行为和各种类型的反应,以减轻人为错误。生理传感器可用于更好地评估哪种设计以最佳方式满足用户需求。几十年来,脑活动传感器已在脑机接口 (BCI) 社区中得到应用。EEG 是一种非常流行的模式,因为它具有非侵入性和高时间分辨率。先前的研究表明,在预测和分类任务中使用多模态测量比单模态测量具有更高的实验结果性能。因此,我们希望将 EEG 与现有的实验装置相结合,其中包括功能性近红外光谱 (fNIRS)。通过快速原型在设计-构建-测试的循环中开发了一种集成。与目前可用的低成本设备相比,所提出的设置增加了可用的电极位置,并构成了一种实用的低成本方法,用于将 EEG 测量与其他大脑活动传感器(如 fNIRS)相结合。通过两个任务对信号质量进行了概念验证测试,这两个任务显示 EEG 信号中容易检测到的变化:闭眼和眨眼。闭眼会增加 alpha 范围内的峰值幅度,一旦睁开眼睛,这种效果就会逆转。故意在特定间隔内眨眼会在信号中产生特征性眼电图 (EOG) 伪影。两种反应都与文献一致。所提出的解决方案旨在降低将 EEG 作为现有实验设置中的附加模式的障碍,从而提高实验结果的性能。关键词:EEG、fNIRS、原型设计、以人为本的设计、实验
摘要 — 近年来,神经科学家一直对脑机接口 (BCI) 设备的开发很感兴趣。运动障碍患者可能受益于 BCI 作为一种交流方式和运动功能恢复。脑电图 (EEG) 是评估神经活动最常用的方法之一。在许多计算机视觉应用中,深度神经网络 (DNN) 显示出显着的优势。为了最终使用 DNN,我们在此介绍一种浅层神经网络,它主要使用两个卷积神经网络 (CNN) 层,具有相对较少的参数并能快速从 EEG 中学习频谱时间特征。我们将此模型与其他三种具有不同深度的神经网络模型进行了比较,这些模型应用于适合患有运动障碍和视觉功能下降患者的闭眼状态心算任务。实验结果表明,浅层 CNN 模型优于所有其他模型,并实现了 90.68% 的最高分类准确率。它在处理跨主题分类问题时也更加强大:准确率标准差仅为 3%,而传统方法的准确率标准差为 15.6%。
摘要:驾驶员疲劳检测研究对提高驾驶安全具有重要意义。为提高检测准确率,本文提出一种基于面部特征点的驾驶员疲劳实时综合检测算法,利用面部视频序列检测驾驶员疲劳状态,无需在驾驶员身上配备其他智能设备。构建任务约束的深度卷积网络,基于68个关键点检测人脸区域,解决各任务收敛速度不同导致的优化问题。根据实时人脸视频图像,基于面部特征点计算眼部纵横比(EAR)、嘴部纵横比(MAR)和闭眼时间百分比(PERCLOS)眼部特征。建立驾驶员疲劳综合评估模型,通过眼部/嘴部特征选择评估驾驶员疲劳状态。经过一系列对比实验,结果表明,该算法在驾驶员疲劳检测的准确率和速度上均取得了良好的效果。
